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Abstract

Within the hyporheic zone, a complex interplay of abiotic processes dictates
the growth conditions of biomass. Given the hyporheic zone’s potential role
to bioremediate contaminants through biotic and abiotic reduction, decod-
ing these growth determinants has broader ecological significance. In this
study, we present a Monte-Carlo-style exploration into how varied initial
conditions influence biomass growth. Our modeling approach simulates a
two-dimensional, meter scale cross-section of the hyporheic zone, integrat-
ing heterogeneous permeabilities and accurate hyporheic flux, and modeling
chromium reduction through Monod kinetics.

To effectively capture bioclogging dynamics and soil respiration, we’ve
enhanced the reactive transport model, PFLOTRAN. Our expanded model
accounts for biomass decay influenced by fluid velocity, and the dependency
of biomass growth on temperature. We highlight the impacts of our velocity-
based biomass decay function by providing a sensitivity analysis of the impact
of different parameter values on biomass growth and chromium reduction. In
addition, we generate 375 variations of simulations to offer holistic insights
into microbial growth dynamics through mean trend analysis, mean spatial
distribution analysis, sensitivity analysis, PCA and clustering, and correla-
tion heatmaps. This analysis reveals a number of unreported phenomena, and
shows that abiotic reduction is more dominant than biotic reduction, even
in cases of high biomass concentrations. In this study, we thus contribute
theoretical model developments for biomass growth in saturated porous en-
vironments, a working version of our biomass growth model in PFLOTRAN,
and analysis of the feedback cycles and variable relationships present in our
simulations.
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1. Introduction

Historically, studies in the HZ have primarily revolved around under-
standing flow dynamics [1, 2, 3], nutrient flux [4, 5, 6], and biofilm growth
[7, 8, 9, 10]. (Couple sentences on flow dynamics and nutrient flux research).
Most of the current research on biomass growth in the HZ relates to the
ecological significance of microbial communities [11, 12, 13, 14], but recent
research has also illuminated the impact of biofilms on physical hydrologic
properties such as permeability and local flow speed [9, 10, 15, 16]. Specif-
ically, the emergence of biofilms, which causes a decrease in permeability
known as bioclogging, has been recognized as a significant factor affecting
water flow and solute transport [7, 17, 18]. Furthermore, variations in the
properties of biofilms such as strength, density and stickiness, and variations
in the geometry of the porous media such as grain shape, impact the relative
changes in permeability [17]. The degree of bioclogging is also dependent on
flow speed. As speed increases, the increased fluid shear causes a breakup of
the biofilm which represents a local decrease in biomass concentration.

Biomass growth in the hyporheic zone can be understood as a complex
feedback loop dependent on a myriad of individual phenomena. Flow, as
an initial causal variable in most cases, acts as the foundation for this feed-
back loop. It instigates a flux of temperatures and nutrient concentrations
within the hyporheic zone. This flux, in turn, triggers changes in biomass
concentrations. Generally, higher nutrient levels and increased temperatures
tend to promote growth [19, 20, 21, 22]. However, the relationship between
temperature and biomass is somewhat nuanced. For instance, an uptick
in temperature leads to reduced water viscosity, which subsequently results
in increased flow speeds. Increased fluid speed may bring in nutrient-rich
or nutrient-poor water, resulting in changes to the biomass growth within
the domain. Furthermore, high shear rates caused by increased fluid speed
can result in the breaking apart and subsequent transport of biomass. How-
ever, the coupling of these multiple phenomena has not yet been investigated,
meaning the exact impact of temperature on biomass growth in the hyporheic
zone is not fully understood.

Biomass growth can also influence a soil’s permeability [23, 24]. As
biofilms become denser, they lead to bioclogging, reducing soil permeability.
This impedes the nutrient dispersion across the hyporheic zone, subsequently
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slowing biomass growth. This dynamic between biomass and permeability
creates a negative feedback loop within the overarching feedback mecha-
nisms. More biomass leads to reduced permeability, which in turn diminishes
biomass growth. Many studies have investigated how bioclogging alters per-
meability (cute), but few studies have simulated the impacts of permeability
on biomass growth (cite). Furthermore, bioclogging simulations are often
done in the context of homogeneous permeability simulations, meaning the
impacts of soil heterogeneity on bioclogging and biomass growth are not well
understood.

Reactive transport (RT) simulators [25, 26, 27] have emerged as powerful
tools that allow for investigation and prediction of phenomena within the
hyporheic zone [28, 29, 30, 31]. Field and lab studies are often resource-
intensive and require a large amount of time. Although not able to capture
the same novelty and richness of information available from in-situ measure-
ments, RT simulations offer a highly analytical viewpoint of known physical
and chemical phenomena that can be accurately described through systems
of equations. RT simulators are constantly being updated to include newly
understood interactions. However, given their vast complexities, it is in-
evitable that there will always be new relevant models that have yet to be
applied to RT simulators, such as the velocity-based decay of biofilms.

In this paper, we aim to provide two major contributions. First, we
seek to further our understanding of the hyporheic zone by investigating the
complex relationships governing biomass growth for a variety of input con-
ditions. Furthemore, we highlight the nuanced relationships between abiotic
elements and bacterial proliferation and highlight how these relationships
impact chromium reduction in the hyporheic zone. Second, we seek to high-
light the sensitivity of our velocity-based biomass decay in terms of biomass
growth and chromium reduction.

2. Methods

2.1. Description of RT Simulations

2.1.1. Description of Chrotran

Our simulations are built upon PFLOTRAN [26], a sophisticated multi-
physics reactive transport simulator developed collaboratively by multiple
national laboratories. Specifically, we have adapted the Chrotran [32] version
of PFLOTRAN to create a high-complexity simulation of biomass growth in
the hyporheic zone at the Darcy scale. Chrotran models the dynamics of

3



five key species: a heavy metal contaminant (in our case, Cr(VI)), an elec-
tron donor, biomass, a non-toxic conservative bio-inhibitor, and a biocide. It
incorporates both direct abiotic reduction through donor-metal interaction
and biotic reduction driven by donor-induced biomass growth. Chrotran
uses Monod kinetics to define biomass growth as a function of electron donor
concentration, with additional factors accounting for biomass crowding, inhi-
bition and decay. We chose to make the input concentrations of bio-inhibitor
and biocide low to simplify the analysis of our simulations. Chrotran also
includes crucial processes such as donor sorption (through a mobile-immobile
mass transfer system), bio-fouling, and biomass death. Furthermore, Chro-
tran allows for bioclogging modeling by dynamically updating porosity and
hydraulic conductivity based on biomass concentration. The software can
handle heterogeneous flow fields and arbitrarily many chemical species and
amendment injection points, featuring full coupling between flow and reac-
tive transport. For a comprehensive description of Chrotran’s capabilities
and mathematical formulation, please refer to their paper [32].

2.1.2. Velocity-Based Biomass Decay

We made initial modifications to the published version of Chrotran by
adjusting its parameters. Specifically, we calibrated biomass growth rates
to align with the limited data available on biomass growth in the hyporheic
zone [33, 34, 35]. Additionally, we adjusted steady-state concentrations to
be broadly representative of those found in wetland environments [36].

The original Chrotran model defines biomass decay using a simple linear
function that only considers the current biomass amount and a minimum
biomass threshold. However, recent research suggests that biomass decay can
also be influenced by shear stress [17]. Specifically, research has shown that
the thickness of biofilms has an inverse logarithmic relationship with shear
stress. In our study, we consider biofilm and biomass to be interchangeable.
At high flow velocities, significant shear stresses can form at permeability
boundaries, potentially dislodging and transporting biofilms and bacterial
deposits. While ideally, we would incorporate shear stress values directly
into Chrotran’s biomass decay function, PFLOTRAN lacks the capability
to calculate these stresses. As an alternative, we developed a function that
calculates cell-specific biomass decay based on cell-specific Darcy velocity
(equation 1).

λb = λB2(v − α)β(B−B0) (1)
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Figure 1: Sensitivity analysis of parameters in the augmented biomass decay equation. (a)
Sensitivity of the B2 parameter. Higher values of B2 result in a larger amount of initial
decay for speed>1e-4, but don’t impact the long-term slope of the relationship between
speed and decay. (b) Sensitivity of the Beta parameter. Higher values of Beta result in a
smaller amount of initial decay but a greater slope. (c) Sensitivity of the Alpha parameter.
Higher values of alpha result in a greater increase in initial decay, but the speed required
to produce the initial decay is greater.

B2 represents the background decay rate based on environmental fac-
tors. B is the concentration of biomass (mol/m3), and B0 is the initial, or
background, biomass concentration. V represents the Darcy velocity of the
fluid. Alpha is a fitting parameter that physically represents the fluid speed
required to start the shearing of biomass. Beta is a fitting parameter that
represents the rate of increase of decay as flow speed increases. For low values
of beta, low flow speeds will cause a small increase in biomass decay, and high
flow speeds will cause a medium increase in biomass decay. For high values
of beta, low flow speeds will have essentially no impact on biomass decay,
but high flow speeds will cause a large increase in biomass decay. Thus, beta
represents both the speed required to cause a significant increase in biomass
decay and also the rate that biomass decay increases at as flow speed in-
creases. We can see from the sensitivity analysis of this equation (Fig. 1)
that the amount of decay is 1e-10 below a speed of about 1e-4 (depending
on the value of alpha). For our implementation in PFLOTRAN, we use a
conditional statement that returns the value of (v − α) if v > α, else we
return 1e-10 in place of (v − α).

The underlying premise of our biomass decay equation is that initial
scouring establishes a steady-state biomass concentration at a given flow
velocity. Subsequent increases in flow velocity lead to enhanced scouring, at-
tributed to both the elevated flow speed and the formation of preferential flow
channels within the biofilm matrix. We calibrated the fitting parameters α
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Figure 2: Shear stress fields derived from OpenFoam simulations of a 25% porosity geom-
etry with a grain diameter of 20 µm and 40 µm. The D=20 µm simulation has a mean
shear stress of 1.27e-7 and a max shear stress of 7.89e-7. The D=40 µm simulation has
a mean shear stress of 2.71e-7 and a max shear stress of 1.86e-6. The ratio of max to
mean shear stress increases as grain diameter increases (6.21 to 6.86), indicating that a
pore scale correction factor of 10 is reasonable for our simulations, where average grain
diameters may theoretically range from less than 1 µm (clay) to 100mm (gravel).

and β through a comparative sensitivity analysis with published research on
biofilm thickness as a function of shear stress [17]. It is well-established that
the distribution of micro- and pore-scale velocities can diverge significantly
from Darcy-scale velocities [37]. Given that biofilms primarily develop within
pore spaces, they are subject to pore-scale velocity variations, resulting in
higher shear stresses on the biofilms compared to Darcy-scale calculations.
To address this scale discrepancy, we employed OpenFOAM [38, 39] to sim-
ulate two homogeneous porous geometries, each measuring 665 µm by 665
µm, with a porosity of 25% but differing in pore length and grain diame-
ter (Fig. 2). Both simulations revealed an approximate order of magnitude
difference between mean and maximum shear stresses. Consequently, we ap-
plied a pore-scale correction factor of 10 to adjust the shear stresses derived
from PFLOTRAN’s Darcy-scale simulations.

In our shear stress calculations from PFLOTRAN, we opted to use the
maximum shear stress rather than the average. This decision is justified by
the sparse spatial distribution of significant shear stresses, which primarily
occur at interfaces between units of differing permeability where large velocity
gradients exist (Fig. 3). While our Gaussian permeability fields contain few
sharp discontinuities, real soil systems typically exhibit high heterogeneity
at the pore scale, suggesting that our simulated shear stress fields are likely
more uniform than reality. Therefore, we posit that the maximum shear

6



Figure 3: Average shear stress field for the high-speed calibration simulation. High shear
values (5e-3 to 5.4e-2), indicated by red color, occur due to sharp transitions in permeabil-
ity and high velocity magnitude. The top right section of the domain contains preferential
channels with high local velocities. When these high velocities encounter low-permeability
transitions, their directions change and velocities significantly reduce, resulting in large
velocity gradients (and thereby shear magnitudes). Areas of the spatial domain with lower
velocity or less transitions between high and low permeability, which comprise the major-
ity of the total area, generally have shear values of 1e-5 to 6e-4.

stress serves as a reasonable proxy for the true mean shear stress in more
heterogeneous systems.

To validate our approach, we created three baseline simulations and cal-
culated their shear stresses using the aforementioned methodology. We then
correlated these values with those presented in Figure 5 of [17], computing
the percentage difference in biomass concentrations for each increment in
shear stress (Fig. 4). These percentage differences were compared to the
corresponding changes in biomass thickness reported in the literature, allow-
ing for a final calibration. This comprehensive calibration process yielded
optimal values of β = 0.8 and α = 2 × 10−7. This rigorous approach to pa-
rameterization, incorporating both theoretical considerations and empirical
data, enhances the robustness and applicability of our biomass decay model
across various hydrodynamic conditions in the hyporheic zone.

In addition to our augmentation of the biomass decay equation, we also
altered the standard Chrotran biomass growth function to depend on tem-
perature. Numerous studies have shown that microbial growth generally
increases with increasing temperature [40, 41, 42, 43],. To include this de-
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Figure 4: Biomass time series for a low-speed (blue), medium-speed (orange), and high
speed (yellow) simulation. The legend gives the maximum shear for each simulation. With
the pore-scale to darcy-scale correction of 10, we get max shear values of .054, .024, and
.012. From the paper, these shear values correspond to biofilm thicknesses (after a 14
hour growth period) of 18, 25 and 31, or a 19% decrease in thickness going from sigma =
.012 Pa to sigma = .024 Pa and and 28% decrease in thickness going from sigma = .024
Pa to sigma = .054 Pa. Our steady-state biomass concentrations show similar percentage
differences (22% and 29%), indicating a relatively accurate calibration of our velocity-
based biomass decay.

pendency in PFLOTRAN, we parameterized the Ratkowski function [44] as

λBT
= P1T

6 + P2T
5 + P3T

4 + P4T
3 + P5T

2 + P6T + P7 (2)

where P1 = −2.9×10−9, P2 = 2.3×10−7, P3 = −6.5×10−6, P4 = 6×10−5,
P5 = 1.4 × 10−4, P6 = 2.4 × 10−2, and P7 = 0.196. Plugging this into the
original Chrotran biomass growth equation gives us

µb = λB1λBT
B

D

KD +D
(

KB

KB +B
)α (3)

2.1.3. Permeability and Flow

Studies have shown that biomass growth in the hyporheic zone is strongly
linked to the hyporheic flux [9, 7, 45, 46]. Depending on the concentration
of nutrients and the flow speed of the groundwater and surface water flows,
a positive or negative flux can have different impacts on growth. To gain
deeper insight into how exactly these differences affect biomass growth, we
simulated the hyporheic zone under a variety of realistic flow conditions (Fig.
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Figure 5: Time-series of pressure boundary condition groups used in the simulations. For
each group, slight variations to the time-series were introduced to develop a much wider
variety of potential flow conditions for the simulations.

5a). The gaining and losing flow conditions at high speed represent the largest
hyporheic fluxes we were able to find in the literature (cite), the low-speed
gaining and losing conditions represent much smaller fluxes, and the medium-
speed conditions are an average between the low-speed and high-speed con-
ditions. In addition, we use hydrographs that come from hyporheic flux data
measured at the Hanford site (cite). Thus, we examine feedback cycles and
statistical relationships in the hyporheic zone from a general perspective that
can be considered the average of a variety of previously published data.

In addition to the general direction and magnitude of flow, permeability
has a significant influence on the general transport of nutrients and biomass
within the hyporheic zone. At low permeabilities, biomass and nutrients are
less able to disperse throughout the hyporheic zone, so average biomass con-
centrations over a large area will be less. However, hotspots of high biomass
concentration may still form in low permeability zones, which may also result
in bioclogging. To understand how exactly biomass growth is impacted by a
variety of permeabilities, we created a variety of heterogeneous permeability
fields with different covariance ratios (Fig. 6). Although the mean per-
meability was similar for most simulations (around 2e-10 m2), the effective
permeability (Keff) would change based on the covariance ratio. Further-
more, we also ran simulations at extremely low permeability to understand
biomass growth in a significantly different environment.
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Figure 6: Sample heterogeneous permeability distributions (at t=0) used in simulations
featured in this study. This figure is also featured in some of our unpublished work on
upscaling the simulations discussed in this study.

2.1.4. Boundary Conditions

We model a segment of the hyporheic zone as a vertical slice measuring 1
meter in height and 2 meters in length. This slice represents the interface be-
tween groundwater and surface water, with the top and bottom boundaries
corresponding to surface flow and groundwater respectively. The left and
right boundaries extend the hyporheic zone longitudinally along the direc-
tion of river or groundwater flow. Flow conditions at the top and bottom are
controlled by Dirichlet boundaries, with pressure differentials set according
to the simulation type: gaining, losing, or hanford. The lateral boundaries
allow for bidirectional flow seepage, regulated by a Dirichlet pressure bound-
ary of zero. Transport boundary conditions mirror those used for flow. A
variety of scales were used for the simulations in our study. For our analysis
of feedback cycles and general relationships observed in our simulations, we
created simulations that were 1x2 meters, 1x4 meters, and 1x20 meters that
all had a dx and dy of 0.01 meters. For our sensitivity analysis of the im-
pacts of our velocity-based biomass decay on biomass growth and chromium
reduction, we created simulations that were 1x2 meters and had a dx and dy
of 0.005 meters.

2.1.5. Simulation Variables

The variables (also referred to in this work as features) of the simulations,
as well as their range of possible values, are given in Table 1. All of the
features that depend on the time-evolution of the simulation, such as biomass,
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Table 1: Description of physio-chemical features and their ranges of possible values used
in the simulations. B: biomass, ED: electron donor (molasses), Cr: chromium, V: velocity,
P: pressure, T: temperature, ϕ: porosity, k: permeability.

Var B ED Cr(VI) Vy Vx P T ϕ k
(mol
m3 ) (mol

L ) (mol
L ) (m

hr ) (m
hr ) (Pa) (◦C) (m2)

Min 1e-10 1e-20 1e-20 -632 -486 -1214 4.8 1e-4 1e-15
Max 765 5.5e-3 7.6e-3 671 651 7099 25 0.6 1e-9
Mean 58 8.1e-6 1.4e-5 -5.8e-2 -1.4e-2 786 11.5 0.13 2e-10

chemistry, and flow speed, are referred to as the “physio-chemical features”.
The variables that are prescribed at the beginning of the simulation and
don’t change value over time are referred to as “input variables”.

2.2. Sensitivity Analysis

One of the primary goals of this study is to gain deeper insight on the
abiotic controls of biomass growth in the hyporheic zone. To this extent, we
employ a variety of sensitivity and correlation analyses to understand how
different features may impact growth. We use classical sensitivity analysis,
changing one feature and keeping all others equal, to determine the individual
impacts that each feature may have on biomass growth. Furthermore, we use
a Monte-Carlo-type sensitivity analysis to understand feature relationships at
a more global level. Specifically, we ran 375 simulations of the hyporheic zone,
each under slightly different input conditions, then used PCA and cluster
analysis to understand physio-chemical feature relationships and groupings.
In addition, we used a correlation heatmap to identify correlations between all
the simulation features (both physio-chemical features and input variables).

3. Results and Discussion

3.1. Feedback and Mechanisms of Biomass Growth

The primary known physio-chemical features that impact biomass growth
at scale, as well as their general relationships with each other, are shown in
Figure 7. While modeling of oxygen concentrations was beyond the scope
of this study, we included it as a primary variable in the biomass feedback
loop because of the vast literature detailing the impacts of oxygen depletion
on bacteria [45, 47, 48]. Furthermore, each of these physio-chemical features
and relationships have previously been reported on in the literature (cite).
These interactions were also discussed in the introduction, but essentially,
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Figure 7: Known feedback cycles from physical features present in simulations of biomass
growth in the hyporheic zone. A blue arrow signifies a positive causative effect (increase
leads to increase), and a red arrow indicates a negative causative effect (increase leads to
decrease).

changes in flow cause changes in nutrient concentrations and temperature
which then cause changes in biomass growth. As biomass grows, it consumes
nutrients and oxygen, and reduces the local permeability of its substrate.
This decrease in permeability in turn causes a decrease in local fluid speed.

The only new connection that our study adds, that, although previously
known, had not yet been incorporated into reactive transport models, is
speed-based biomass decay. We should also note here that these represent the
primary intuitive relationships most important for biomass growth, but don’t
necessarily reflect the results of our own simulations. In our own simulations,
which are further discussed in greater detail throughout the rest of the paper,
we find temperature to have a small negative correlation with biomass, and
we find pressure to have a greater correlation with biomass than either of
the velocity components. (at the end, make another figure 7 with adapted
relationships?).

The average spatial distributions of the physio-chemical features for one
of our losing simulations (Fig. 8) can be used to elucidate some of the re-
lationships in our biomass growth feedback loop. Biomass is greatest in the
high-porosity zones around the edges of the domain, and concentrations are
smallest in the low-porosity zone in the middle of the domain. Where fluid
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speeds are largest, we see the greatest amount of lateral extension of biomass
towards the middle of the domain. In addition, a small amount of velocity-
based biomass decay can be observed in the lower right corner of the domain
for the biomass distribution. The spatial distribution of molasses looks sim-
ilar to that of biomass except the gradients are smoother. The temperature
and Cr(VI) distributions are primarily determined by the horizontal flow
(Vy). Because pressure is lowest at the bottom boundary, a left-to-right pres-
sure gradient exists near the left boundary, causing a rightward flux of fluid.
The right boundary has the greatest pressure in the domain, meaning that
flow is generally right to left in this simulation (negative Vy). Thus, the high
Cr(VI) concentrations are a result of inward flux from the left side of the
domain, and the low Cr(VI) concentrations are a result of inward flux from
the right side of the domain. The impacts of biomass growth on Cr(VI) re-
duction can be seen in the slightly elevated concentrations of Cr(VI) near the
right boundary where biomass concentrations are high. Although molasses
concentrations are also high here, most of it is immediately consumed by
biomass and won’t be available for abiotic reduction. Thus, where biomass
concentrations are lower, even though molasses is also lower, we see greater
reduction in chromium concentrations, in other words, the scale of the vari-
ability of biomass concentrations (x=400 to x=350 is a 200 times increase
in concentration) is greater than that of molasses concentrations (x=400 to
x=350 is a 7 times increase). Because of this difference in scales, between
x=300 and x=350 abitiotic reduction dominates and chromium concentra-
tions are lower than they are where biomass is high.

In addition to the average spatial distributions of key physio-chemical
features for a single time series, we present the average normalized spatial
distributions of the physio-chemical features over all of our simulations (Fig.
9). This figure represents the general spatial trends that persist after aver-
aging over each 1x2 meter simulation. The averaged spatial distributions of
biomass, molasses (labeled as ED in Figure 9) and Cr(VI) all have a signifi-
cant degree of similarity due to the boundary conditions of the simulations.
Although the concentrations of these features were randomized in our simu-
lations, the predominant direction of flow over the entirety of our simulations
is from top (surface water) to bottom (groundwater). However, the surface
water contains decreased levels of ED relative to the groundwater, meaning
biomass growth is generally greater in the gaining simulations. Thus, as
groundwater flows into the domain from the bottom, and because nutrient
and biomass concentrations had low initial values and the transport condi-
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Figure 8: General (averaged over all simulations and time steps) trends for key physio-
chemical features. Each variable is normalized, with 0 (dark blue) corresponding to low
values and 1 (dark red) corresponding to high values.

tions are greater than those at the top boundary, each of these variables
shows high values near the bottom of the domain. The high concentrations
of biomass on the right side of the domain are entirely a result of the fact that
most simulations featured lateral flow moving from the right to left side of
the domain. Porosity, although impactful at the level of a single simulation,
seems to have no impact on biomass or ED concentrations when averaged
over all simulations. However, porosity does have a large impact on immo-
bile molasses concentrations, with higher amounts of EDim appearing where
porosity is high. Similar to the average spatial distributions for a single simu-
lation, the average spatial distributions over all simulations show the impacts
of fluid speed on biomass decay as a slightly lower concentration of biomass
in the lower right corner.

These results highlight the complex interplay between physical, chemical,
and biological processes in the HZ, demonstrating the importance of consid-
ering spatial heterogeneity and temporal dynamics in modeling efforts. The
observed dominance of abiotic reduction over biotic reduction, even in areas
of high biomass concentration, challenges conventional assumptions and has
significant implications for bioremediation strategies.

3.2. General Trends

The general trends of the physio-chemical features are shown through
their mean feature plots (Fig. 10). The red dotted lines in each time series
plot show the time value of the inflection points for biomass growth (Fig.
10e). Average biomass concentrations increase very slowly for the first 18
days, increase rapidly for the next 36 days, then increase at a lower growth
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Figure 9: General (averaged over all simulations and time steps) trends for key physio-
chemical features. Each variable is normalized, with 0 (dark blue) corresponding to low
values and 1 (dark red) corresponding to high values.

rate for the rest of the simulation (Figs. 10d and 10e). The first inflec-
tion point (at t = 18 days) corresponds to the time when biomass growth
starts to dramatically increase. This also represents the point that ED and
ED-immobile start to significantly decrease, Cr(VI) starts to increase, and
porosity starts to decrease. We find that the relationship between biomass
concentrations (in mol/m3) and porosity can be described via the equation

ϕ = .141− 10−4Cbio (4)

where Cbio is the biomass concentration. This equation may be useful for
predicting general trends in porosity as a function of biomass concentrations,
although it is important to note that this function only represents our average
simulation, and the exact value of this function will depend on a variety of
factors such as soil type, microbial community structure, flow rates, and
nutrient concentrations. At the highest amounts of growth (around day 46-
52), biomass growth has a clear correspondence with pressure and Vx (Figs.
10b and 10a). The increase in pressure corresponds to a large decrease in
the magnitude of Vx and a small increase in the magnitude of Vy. These
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changes in flow then cause a an increase in molasses, chromium and the rate
of biomass biomass growth. Around t = 52, the pressure starts to drop again
and the magnitude of Vx increases, resulting in decreases in biomass growth,
Cr(VI) and ED. At t = 60, the molasses concentrations and biomass growth
rate start to increase again, but the chromium concentration continues to
decrease. The vertical flow (Vx) thus seems to have a large effect due to
the transport input conditions at the top boundary. Specifically, greater
negative vertical velocities, representing flow from the top of the domain to
the bottom, seem to result in a increase in molasses concentrations, which
thus causes an increase in biomass growth. Although biomass growth and
molasses concentrations are enhanced due to increased nutrient flux from the
top boundary, the amount of Cr(VI) is also increased from the greater top-
boundary flow, resulting in a small increase in Cr(VI) concentrations from
day 42 to day 52. At t = 70, we approach the steady-state trends of the
simulations. From this point onward, the magnitude of Vy slowly decreases,
Vx and pressure slowly increase, biomass growth and Cr(VI) slowly decrease,
and molasses slowly increases. At this point, biomass concentrations are
relatively high, meaning the increase in Vx and pressure cause a corresponding
decrease in growth due to velocity-based biomass decay. While at t = 50 the
spike in Vx causes an increase in the biomass growth rate, by t = 70 it
starts to cause a decrease in the growth rate. The greater negative values
of Vx also should result in increased concentrations of Cr(VI) considering
the transport boundary conditions. However, because ED concentrations
steadily increase due to the decrease in biomass growth, the increased amount
of abiotic reduction is enough to cause a decrease in Cr(VI). We can also
see the dominance of abiotic reduction over biotic reduction through the
beginning of the time series plots. From day 0 to day 16 there is an increase
in ED of 0.1e-5 which corresponds to a decrease in Cr(VI) of about 0.2e-5.
From day 80 to day 120 we observe a similar increase in ED concentration of
0.1e-5 which corresponds to a 0.1e-5 decrease in Cr(CI) concentration. Thus,
the decrease in Cr(VI) concentration for the same relative increase in ED
concentration is greater when there is little to no biomass, meaning abiotic
reduction is the primary reason (besides transport boundary conditions) for
the decreases in Cr(VI) in our simulations.

These findings reveal the intricate temporal dynamics of biomass growth,
nutrient cycling, and chromium reduction in the HZ. The identification of key
inflection points and the quantification of relationships between variables,
such as biomass concentration and porosity, provide valuable insights for
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Figure 10: General (averaged over all simulations and spatial dimensions) time series
for key physio-chemical features. The red dotted lines show the approximate time of the
biomass growth inflection points. (a) Vx (blue) and Vy (orange). (b) Pressure. (c) Porosity.
(d) Biomass. (e) Biomass growth. (f) Cr(VI) (blue), ED (orange), and ED-immobile
(green). Here, biomass growth is shown to primarily be dependent on ED concentration.
The Cr(VI) timeseries shows an increase in concentration as molasses decreases, indicating
the dominance of abiotic reduction over biotic reduction.

predicting system behavior and optimizing remediation efforts.

3.3. Sensitivity Analysis of Biomass Growth

To gain deeper insights into the abiotic determinants of biomass growth in
the hyporheic zone, we used sensitivity and correlation analysis. The sensitiv-
ity analysis (Fig. 11) shows the biomass time series and spatial distributions
of the last time step for 6 equally spaced values of a simulation input variable
(keeping all other input variables constant). We performed sensitivity analy-
sis for five key variables (temperature, carbon reuse efficiency, homogeneous
permeability value, Vx, and the biomass crowding parameter). The temper-
ature sensitivity analysis (Fig. 11a) shows that at higher temperatures the
biomass growth rate increases, leading to differences in biomass concentra-
tions that remain constant after about day 60. The spatial distributions show
more variation in biomass concentrations for higher-temperature simulations.
The carbon reuse efficiency (D), is a Chrotran parameter that defines the sto-
ichiometric relationship between the ED and biomass. So for D = 1, one mol
of ED creates one mol of biomass. The sensitivity analysis for D (Fig. 11b)
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shows that lower values of D result in an increase in biomass growth that
increases over time. The spatial distributions show that for lower values of
D, the biomass is able to spread further throughout the domain. The perme-
ability sensitivity analysis (Fig. 11c) indicates that mean permeability of the
domain has a huge impact on biomass growth. For k = 1× 10−12 there is a
minute amount of biomass growth that can be observed in the bottom corners
of the spatial distribution, but for lower permeability values, we don’t observe
any biomass growth. A permeability of 1×10−12 m2 is representative of silty
sand or permeable basalt (cite), implying that aquifers primarily composed of
these materials (or lower-permeability materials) are not likely to house large
concentrations of biomass. The Vx sensitivity analysis (Fig. 11d) indicates
that greater vertical velocity contributes to a more sigmoidal (as opposed
to linear or exponential) growth curve, results in generally greater biomass
growth, and causes the growth curve to have small undulations. This wave-
like behavior is a result of spikes in flow speed causing significant shearing
of biomass, thus briefly decreasing the rate of biomass growth. α is another
Chrotran parameter that describes biomass crowding. For higher values of
alpha, we see slightly lower biomass concentrations over time, although the
main difference is in the spatial distributions (Fig. 11e). When crowding is
high (low alpha), we get much higher concentrations of biomass that are con-
strained to the first few centimeters of the domain. When crowding is low,
we get a lower maximum biomass concentration, but the biomass is spread
throughout the entire domain. Overall, the sensitivity analysis shows that
many input features result in large changes to biomass concentrations, illus-
trating the general complexity of determining the most important impacts
on biomass.

To further investigate the impacts of our simulation variables on biomass
concentrations in a more general sense, we used PCA and cluster analysis
(Fig. 12a) to identify groupings and large-scale relationships across all of
our simulations. The first principle component seems to be primarily de-
termined by Vx, temperature, ED, and P, meaning it largely represents the
flow and transport boundary conditions. The second principle component is
determined by biomass and porosity, which indicates that it represents both
the boundary conditions, and the biomass growth conditions. Porosity is the
only variable in the PCA that isn’t significantly influenced by the bound-
ary conditions, which further reinforces our interpretation of the principle
components. We also see interesting sets of groups that form as a result of
cluster analysis in the space of the first two principle components. The top
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Figure 11: Sensitivity analysis for selected features with large impacts on biomass growth.
For each feature, we show the time series, as well as the spatial distributions of biomass for
the final time step. The colorbars show biomass concentration in mol/m3. (a) Temperature
sensitivity. (b) Carbon reuse efficiency sensitivity. (c) Biomass crowding sensitivity. (d)
Vx sensitivity.

right can be described as the biomass cluster, the top left is the temperature
cluster, the bottom left is the Cr(VI) cluster, the middle is the standard
deviation and Vy cluster, and the bottom right is the ED/P cluster. These
clusters represent most of the strongest relationships with biomass concen-
trations in our simulations (Fig. 12b). Specifically, the strongest correlations
for biomass with other physio-chemical variables are σP (.37), σEDim

(.36),
pressure (.32), σVx (.31), σVy (.31), σED (.31), ED (.30), EDim (.30), σT (-
.21), then chromium (-.18). Surprisingly, biomass is more strongly correlated
with the standard deviation of features than the features themselves (except
for chromium). The reason for this is likely because the standard devia-
tions of features are more strongly correlated with the simulation boundary
conditions (as denoted by SIMID) than the feautures are (Fig. 12b).

The PCA also indicates a significant amount of correlation between ED,
EDim, P, σP , σVx , σVy , and σEDim

, which are all anticorrelated with T, Vx,
and σT . This is partially due to the fact that the simulations where the flow
was from the river to the groundwater (i.e., losing streams) had the largest
maximum vertical velocities and highest temperatures. Similarly, the gaining
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streams had higher nutrient concentrations, so this grouping likely represents
the gaining streams. However, higher pressure is not necessarily correlated
with the gaining simulations. Instead, P likely occupies this position in
the 2D PCA space because of its high correlation with ED. An increase in
pressure causes an increase in the magnitude of Vx or Vy, which almost always
causes an increase in ED concentrations as more nutrients enter the domain.

The correlations indicated in the PCA are slightly different from those
of the correlation matrix, both because the PCA doesn’t explicitly represent
correlations, and because the PCA was only calculated with physio-chemical
features, but the correlation matrix also includes the biomass growth param-
eters from Chrotran (λa, λb, λc, and λd), permeability covariance ratio, max
length in the permeability covariance ratio, time, and SimID. For example,
the PCA shows a slight amount of positive correlation between biomass and
this ED/P grouping, although it is most strongly positively correlated with
the standard deviations of biomass and ED. However, σED is in a different
cluster than biomass, indicating some strong differences in the first priciple
component between biomass and σED. Also, temperature and biomass are
slightly negatively correlated in the PCA, but are slightly positively corre-
lated in the correlation matrix. The most general correlations are given by
the correlation matrix because more variables were used to compute them.

Thus, we use the correlation matrix (and specifically any correlations with
magnitude greater than 0.12) as the basis to alter our feedback cycles figure.
To portray the fact that this new feedback cycle (Fig. 13) purely represents
our simulations, we have removed oxygen from the cycle and added Cr(VI).
Also, to indicate the difference between speed and flow direction, we have
added pressure to the cycle, and changed ”flow vector” to Vx. The new
correlation matrix shows temperature to be negatively correlated with the
flow vector, and since correlations don’t allow for two-way causative analysis,
there is only a positive correlation between biomass and ED (no negative
correlation).

This comprehensive sensitivity analysis reveals the relative importance
of various factors influencing biomass growth in the HZ. The identification
of permeability as a critical factor and the complex relationships between
flow conditions, nutrient availability, and biomass distribution provide essen-
tial insights for designing effective bioremediation strategies and improving
predictive models of HZ processes.
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a. b.

Figure 12: PCA for physio-chemical features that were varied for each simulation. The
x-axis shows the first principal component, the y-axis shows the second principal compo-
nent, and the color bar represents the KMeans clustering output in the 2D PCA space.
ED, although the largest correlations for biomass are with σBio and σED. Cr(VI) shows
complete anticorrelation with biomass, which is somewhat surprising given our other re-
sults that show the dominance of abiotic reduction over biotic reduction (Fig. 3). σϕ and
ϕ aren’t strongly correlated with anything, although the show slight positive correlation
with Cr(VI) and negative correlation with biomass, indicating that higher porosity soils
may have less reductive capacity.

3.4. Velocity-Based Biomass Decay Sensitivity Analysis

In addition to using sensitivity analysis to understand the relationships
between the variables of our simulations, we also use sensitivity analysis
to illustrate the impact of changing the parameters of our velocity-based
biomass decay equation. Specifically, we show the spatial distributions at
t=5400 hours for biomass (Figs. 14a-13f) and Cr(VI) (Figs. 14g-13l) for the
situations of the calibrated decay parameters, no decay, high β, low β, high α,
and low α. The spatial distributions for biomass generally show that biomass
concentrations, as well as the spatial extent of the biomass plume, are highly
dependent on the velocity-based biomass decay parameters. The simulation
with no decay has the highest concentrations of biomass, followed by the
β = 1.2 simulation, then the α = 2 × 10−4 simulation. The α = 2 × 10−10

simulation shows essentially no difference from the calibrated simulation, and
the β = 0.4 simulation shows much lower concentrations than the calibrated
simulation. For the case of no decay, the spatial distributions aren’t very
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Figure 13: Biomass feedback v2.

different from those of the calibrated decay, but the low beta case has a
dramatically different spatial distribution. The Cr(VI) distributions follow
the same patterns as the biomass, except the no decay, α = 2 × 10−4 and
β = 1.2 simulations show less chromium (or more Cr(VI) reduction) than
the other simulations.

We also show the spatial distributions of porosity (Fig. 14m) and Vx

(Fig. 14n) to gain deeper insight into the spatial distributions of biomass
and Cr(VI). The spatial distribution of biomass for the calibrated decay
parameters (Fig. 14a) are largely determined by the low-porosity area at
x=250, y=50 and the high porosity zone at x=175, y=80. Decay is highest
where fluid speed is highest, which is in the corners of the simulation and
the low-porosity zones in the middle and left side of the domain (Fig. 14n).
Unsurprisingly, these are the areas where we see the greatest amount of
difference from the simulation with calibrated parameters. Specifically, the
no decay (Fig. 14b) and β = 1.2 (Fig. 14e) simulations for biomass show
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much greater biomass concentrations in the corners and middle high-porosity
area of the domain compared to that of the calibrated decay simulation.

Surprisingly, although our general results (Fig. 10) show increased biomass
results in a relative decrease Cr(VI) reduction, we observe the opposite trend
here. Looking at the time series outputs for the sensitivity analysis can
help clear this confusion (Fig. 15). For biomass (Fig. 15a) and chromium
(Fig. 15b), the time series plots show the relative differences highlighted
by the spatial distribution plots. The time series plots for molasses (Fig.
15c), on the other hand, shows very little difference due to changes in the
velocity-based biomass decay parameters. Thus, we see that for each case
of different parameter values, the same amount of molasses is consumed by
biomass (besides the case of β = 0.4). Thus, greater biomass concentrations
result in greater chromium reduction, since each simulation has a relatively
equal amount of abiotic reduction. In other words, the increases/decreases in
bioreduction due to parameter changes in the velocity-based biomass decay
equation don’t result in large decreases/increases in abiotic reduction.

This sensitivity analysis of the novel velocity-based biomass decay model
demonstrates its significant impact on biomass distribution and chromium
reduction. The results highlight the importance of accurately representing
biofilm dynamics in response to hydrodynamic conditions, which can sub-
stantially influence the overall effectiveness of bioremediation processes in
the HZ.

4. Conclusions

This study provides valuable insights into the complex dynamics of biomass
growth and chromium reduction in the hyporheic zone. Through a series
of sophisticated simulations and comprehensive analyses, we have demon-
strated the intricate interplay between various physio-chemical features, in-
cluding flow characteristics, nutrient concentrations, temperature, and per-
meability. Our novel velocity-based biomass decay model, incorporated into
PFLOTRAN, offers a more nuanced representation of biofilm dynamics in
response to hydrodynamic conditions. This advancement allows for more
accurate predictions of biomass distribution and its impact on contaminant
reduction processes. Key findings from this study include:

• The identification of abiotic reduction as the dominant process in chromium
remediation, even in scenarios with high biomass concentrations.
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• The quantification of relationships between biomass concentration and
porosity, providing a useful predictive tool for future modeling efforts.

• The revelation of complex feedback mechanisms between flow condi-
tions, nutrient availability, and biomass growth, highlighting the im-
portance of considering spatial heterogeneity in hyporheic zone model-
ing.

• The demonstration of the significant impact of velocity-based biomass
decay on overall system behavior and contaminant reduction efficiency.

These results have far-reaching implications for bioremediation strategies
in contaminated aquifers. By providing a more accurate representation of
biomass dynamics and contaminant reduction processes, this study enables
better prediction and optimization of remediation efforts.

Future research should focus on validating these findings with field stud-
ies and exploring the implications for bioremediation strategies in diverse
hyporheic zone environments. Additionally, the integration of this advanced
biomass decay model with other reactive transport processes could further
improve our understanding and prediction of complex subsurface biogeo-
chemical dynamics.
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[6] J. V. Kunz, M. D. Annable, J. Cho, W. von Tümpling, K. Hatfield, S. Rao, D. Borchardt, M. Rode,
Quantifying nutrient fluxes with a new hyporheic passive flux meter (hpfm), Biogeosciences 14 (3)
(2017) 631–649.

24



[7] S. Roy Chowdhury, J. P. Zarnetske, M. S. Phanikumar, M. A. Briggs, F. D. Day-Lewis, K. Singha,
Formation criteria for hyporheic anoxic microzones: Assessing interactions of hydraulics, nutrients,
and biofilms, Water Resources Research 56 (3) (2020) no–no.

[8] S. Cook, O. Price, A. King, C. Finnegan, R. van Egmond, H. Schäfer, J. M. Pearson, S. Abolfathi,
G. D. Bending, Bedform characteristics and biofilm community development interact to modify
hyporheic exchange, Science of the Total Environment 749 (2020) 141397.

[9] A. Caruso, F. Boano, L. Ridolfi, D. L. Chopp, A. Packman, Biofilm-induced bioclogging produces
sharp interfaces in hyporheic flow, redox conditions, and microbial community structure, Geophysical
Research Letters 44 (10) (2017) 4917–4925.

[10] X. Ping, M. Jin, Y. Xian, Effect of bioclogging on the nitrate source and sink function of a hyporheic
zone, Journal of Hydrology 590 (2020) 125425.

[11] L. Wang, Z. Wang, Y. Li, W. Cai, Y. Zou, C. Hui, Deciphering solute transport, microbiota assembly
patterns and metabolic functions in the hyporheic zone of an effluent-dominated river, Water Research
251 (2024) 121190.

[12] Y. Wang, Y. Wang, J. Shang, L. Wang, Y. Li, Z. Wang, Y. Zou, W. Cai, L. Wang, Redox gradients
drive microbial community assembly patterns and molecular ecological networks in the hyporheic
zone of effluent-dominated rivers, Water Research 248 (2024) 120900.

[13] D. Liang, J. Song, J. Xia, J. Chang, F. Kong, H. Sun, D. Cheng, Y. Zhang, et al., Effects of heavy
metals and hyporheic exchange on microbial community structure and functions in hyporheic zone,
Journal of Environmental Management 303 (2022) 114201.

[14] L. Zhang, C. Zhang, K. Lian, C. Liu, Effects of chronic exposure of antibiotics on microbial community
structure and functions in hyporheic zone sediments, Journal of Hazardous Materials 416 (2021)
126141.

[15] Y. Xian, M. Jin, H. Zhan, X. Liang, Permeable biofilms can support persistent hyporheic anoxic
microzones, Geophysical Research Letters 49 (14) (2022) e2021GL096948.

[16] F. Kazemifar, G. Blois, M. Aybar, P. Perez Calleja, R. Nerenberg, S. Sinha, R. J. Hardy, J. Best,
G. H. Sambrook Smith, K. T. Christensen, The effect of biofilms on turbulent flow over permeable
beds, Water Resources Research 57 (2) (2021) e2019WR026032.

[17] G. Wei, J. Q. Yang, Impacts of hydrodynamic conditions and microscale surface roughness on the
critical shear stress to develop and thickness of early-stage pseudomonas putida biofilms, Biotech-
nology and bioengineering 120 (7) (2023) 1797–1808.

[18] E. Tsagkari, S. Connelly, Z. Liu, A. McBride, W. T. Sloan, The role of shear dynamics in biofilm
formation, npj Biofilms and Microbiomes 8 (1) (2022) 33.

[19] N. S. Panikov, Microbial growth kinetics (1995).

[20] T. D. Brock, Microbial growth rates in nature, Bacteriological reviews 35 (1) (1971) 39–58.

[21] P. Gikas, S. Sengor, T. Ginn, J. Moberly, B. Peyton, The effects of heavy metals and temperature
on microbial growth and lag, Global Nest J 11 (3) (2009) 325–32.

[22] M. Peleg, A new look at models of the combined effect of temperature, ph, water activity, or other
factors on microbial growth rate, Food Engineering Reviews 14 (1) (2022) 31–44.

[23] Y. Zhang, Q. Tang, P. Shi, T. Katsumi, Influence of bio-clogging on permeability characteristics of
soil, Geotextiles and Geomembranes 49 (3) (2021) 707–721.

25



[24] L. Allison, Effect of microorganisms on permeability of soil under prolonged submergence, Soil Science
63 (6) (1947) 439–450.

[25] C. I. Steefel, S. Molins, Crunchflow, Software for modeling multicomponent reactive flow and trans-
port. User’s manual (2009) 12–91.

[26] P. C. Lichtner, G. E. Hammond, C. Lu, S. Karra, G. Bisht, B. Andre, R. Mills, J. Kumar, Pflotran user
manual: A massively parallel reactive flow and transport model for describing surface and subsurface
processes, Tech. rep., Los Alamos National Laboratory (LANL), Los Alamos, NM (United States . . .
(2015).

[27] M. D. White, M. Oostrom, Stomp subsurface transport over multiple phases version 3.0 user’s guide,
Tech. rep., Pacific Northwest National Lab., Richland, WA (US) (2003).

[28] Z. Hou, H. Ren, C. J. Murray, X. Song, Y. Fang, E. V. Arntzen, X. Chen, J. C. Stegen, M. Huang,
J. D. Gomez-Velez, et al., A novel construct for scaling groundwater–river interactions based on
machine-guided hydromorphic classification, Environmental Research Letters 16 (10) (2021) 104016.

[29] D. Dwivedi, I. C. Steefel, B. Arora, G. Bisht, Impact of intra-meander hyporheic flow on nitrogen
cycling, Procedia Earth and Planetary Science 17 (2017) 404–407.

[30] S. B. Yabusaki, Y. Fang, K. H. Williams, C. J. Murray, A. L. Ward, R. D. Dayvault, S. R. Waichler,
D. R. Newcomer, F. A. Spane, P. E. Long, Variably saturated flow and multicomponent biogeochemi-
cal reactive transport modeling of a uranium bioremediation field experiment, Journal of contaminant
hydrology 126 (3-4) (2011) 271–290.

[31] Y. Fang, X. Chen, J. Gomez Velez, X. Zhang, Z. Duan, G. E. Hammond, A. E. Goldman, V. A.
Garayburu-Caruso, E. B. Graham, A multirate mass transfer model to represent the interaction of
multicomponent biogeochemical processes between surface water and hyporheic zones (swat-mrmt-r
1.0), Geoscientific Model Development 13 (8) (2020) 3553–3569.

[32] S. K. Hansen, S. Pandey, S. Karra, V. V. Vesselinov, Chrotran 1.0: A mathematical and compu-
tational model for in situ heavy metal remediation in heterogeneous aquifers, Geoscientific Model
Development 10 (12) (2017) 4525–4538.

[33] K. Chen, X. Chen, J. C. Stegen, J. A. Villa, G. Bohrer, X. Song, K.-Y. Chang, M. Kaufman, X. Liang,
Z. Guo, et al., Vertical hydrologic exchange flows control methane emissions from riverbed sediments,
Environmental Science & Technology 57 (9) (2023) 4014–4026.

[34] H. Le Lay, Z. Thomas, F. Rouault, P. Pichelin, F. Moatar, Characterization of diffuse groundwater
inflows into stream water (part ii: quantifying groundwater inflows by coupling fo-dts and vertical
flow velocities), Water 11 (12) (2019) 2430.

[35] J. Ren, B. Chen, W. Zhang, L. Men, J. Yang, Y. Li, Quantification of the temporal–spatial distribu-
tions characteristics of streambed hyporheic exchange fluxes with the seasonal variation using heat
as a tracer, Environmental Earth Sciences 79 (2020) 1–19.

[36] Z. Wang, M. Zhao, Z. Yan, Y. Yang, K. J. Niklas, H. Huang, T. D. Mipam, X. He, H. Hu, S. J.
Wright, Global patterns and predictors of soil microbial biomass carbon, nitrogen, and phosphorus
in terrestrial ecosystems, Catena 211 (2022) 106037.

[37] A. Golparvar, Y. Zhou, K. Wu, J. Ma, Z. Yu, A comprehensive review of pore scale modeling
methodologies for multiphase flow in porous media, Advances in Geo-Energy Research 2 (4) (2018)
418–440.

26



[38] H. Jasak, A. Jemcov, Z. Tukovic, et al., Openfoam: A c++ library for complex physics simulations, in:
International workshop on coupled methods in numerical dynamics, Vol. 1000, Dubrovnik, Croatia),
2007, pp. 1–20.

[39] H. G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computational continuum
mechanics using object-oriented techniques, Computers in physics 12 (6) (1998) 620–631.

[40] D. S. Esser, J. H. Leveau, K. M. Meyer, Modeling microbial growth and dynamics, Applied microbi-
ology and biotechnology 99 (2015) 8831–8846.
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Figure 14: Spatial distributions of biomass (a-f) and chromium (g-l) at t = 5400 hours for
the calibrated decay values (a & g), no decay (b & h), α = 2×10−4 (c & i), α = 2×10−10

(d & j), β = 1.2 (e & k), and β = 0.4 (f & l). Spatial distributions of porosity at t = 0 (m)
and Vx averaged over all t (n) are used to further understand the differences in simulation
output due to changes in the velocity-based biomass decay parameters. The top colormaps
represents the concentrations shown in the calibrated decay plots (a & g), and the bottom
colormaps represent the feature (biomass or chromium) concentration of the calibrated
decay minus the feature concentration for the particular change in parameter value.
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a. b. c.

Figure 15: Time series plots (averaged over both spatial dimensions) for biomass (a),
chromium (b), and molasses (c) for simulations with the calibrated decay parameters
(α = 2 × 10−7, β = 0.8), no decay, α = 2 × 10−7, α = 2 × 10−10, β = 1.2, and β = 0.4.
Differences due to parameter changes are relatively small except for β = 0.4, and are
largest for biomass, then chromium, then molasses.
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