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Abstract 

ReacEve transport (RT) simulators are important tools oSen used by researchers to gain insights 

into subsurface processes. These mulE-physics simulaEons aZempt to represent many hydro-

biogeochemical phenomena, but they oSen fall short in terms of computaEonal speed and 

physical accuracy. This dissertaEon provides several tools and conceptual advancements that can 

be used to improve the speed and accuracy of RT simulaEons and further our understanding of 

their outputs. Specifically, this work invesEgates microbial moElity in porous microfluidic devices, 

a comparison of parEcle tracking methods in porous media, and an invesEgaEon of biomass 

growth and chromium reducEon in the hyporheic zone. Furthermore, this dissertaEon details the 

development and performance-tesEng of deep-learning-based tools for the extracEon of moEon 

staEsEcs from videos of parEcles and the upscaling of RT simulaEons. Overall, new tools and 

insights are provided to help improve environmental management strategies, such as 

bioremediaEon of contaminated groundwater or improved understanding of nutrient cycles in 

water systems. 

This dissertaEon advances our understanding of microbe-mediated reacEve transport 

processes through a mulE-scale approach that combines experimental observaEons, 

computaEonal modeling, and innovaEve deep learning techniques. At the micro scale, 

experimental invesEgaEons reveal how different bacterial moElity mechanisms respond to varying 

flow condiEons, with peritrichous flagella enabling more resilient moElity under higher flow rates 

compared to monotrichous flagella or pili. These findings provide crucial insights for developing 

more accurate models of microbial transport in subsurface environments. 

To improve micro-scale invesEgaEons of bacterial transport, this dissertaEon gives a 

comparison of parEcle tracking (PT) methods and presents a novel deep-learning-based PT 
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method. The comparison between PT methods provides guidance for future researchers in terms 

of appropriate parEcle tracking linking algorithms to use for dispersive parEcles in porous media, 

condiEons for desirable parEcle tracking experimental setups, and the limitaEons of parEcle 

tracking as it relates to analysis of bacterial transport. The novel deep learning method, 

DeepTrackStat (DTS), provides a framework for extracEng moEon staEsEcs from parEcle tracking 

videos, addressing fundamental limitaEons in tradiEonal tracking methods while significantly 

reducing computaEonal demands. DTS shows especially strong performance for high-speed 

parEcles, giving it a clear spot for applicaEon within the pantheon of PT methods.  

In addiEon to the work at the micro scale, this dissertaEon also provides improvements 

to microbe-mediated reacEve transport modeling at the Darcy scale. The integraEon of novel 

physical approaches enables comprehensive invesEgaEon of coupled hydro-biogeochemical 

processes in the hyporheic zone, parEcularly focusing on the interacEons between fluid flow, 

biomass development, and chromium reducEon. Through extensive sensiEvity analyses, this work 

reveals that while abioEc reducEon dominates in high-electron-donor environments, bioEc 

processes crucially influence the spaEal distribuEon of reducEon hotspots. Furthermore, the 

research demonstrates that speed-based biomass decay significantly impacts biomass growth only 

under specific condiEons of high fluid velocity or weak biofilm cohesion, providing important 

constraints for environmental management strategies. Expanding on the Darcy-scale microbe-

mediated reacEve transport modeling, this dissertaEon presents STAMNet, a neural network for 

upscaling reacEve transport simulaEons that enables efficient predicEon of large-scale transport 

phenomena while preserving the essenEal dynamics observed at smaller scales. STAMNet has a 

simple MLP structure with a spaEotemporal aZenEon mechanism (STAM) that uses cross-

dimensional residual connecEons to improve both spaEal and temporal feature extracEon. 
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This work's mulE-scale, mulE-method approach provides a foundaEon for improving 

predicEons of reacEve transport in heterogeneous porous media while offering pracEcal tools for 

environmental monitoring and remediaEon. The findings and methodologies presented here 

advance our ability to bridge scales in reacEve transport modeling, from individual bacterial 

behavior to field-scale predicEons, while the developed deep learning tools offer new possibiliEes 

for efficient analysis and upscaling of complex environmental processes. These contribuEons 

support more informed decision-making in environmental management and provide a framework 

for future invesEgaEons of coupled biological, chemical, and physical processes in porous media 

systems. 
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Chapter 1: Introduction 

1.1 Background and Literature Review 

1.1.1.  Microbe-mediated Reactive Transport 

Microbe-mediated reacEve transport encompasses the interacEon of biological, chemical, and 

physical processes within porous media, especially in subsurface environments. Microbial 

acEviEes drive these processes primarily through their metabolic and moElity behaviors, affecEng 

both the transport of solutes [1-4] and the growth and dynamics of biofilms [5-8]. Some of the 

most studied aspects of microbe-mediated reacEve transport include aZachment/colonizaEon [4, 

9-12], chemotaxis [13-17], DLVO interacEons [18, 19], biofilm formaEon [20] and breakup [21], 

microbial moElity [22-31], nutrient cycling [32-34], biodegradaEon kineEcs [35], weathering [36], 

and bioremediaEon [37-41]. To understand and predict the impacts of microbes on geochemical 

processes, an understanding of their transport is paramount. In other words, fundamental 

developments in transport modeling impact most of the models of biogeochemical interacEons in 

the subsurface that are of interest to the research community. Furthermore, microbe-mediated 

reacEve transport is a highly mulEdisciplinary field, meaning that developments in one area oSen 

lead to developments in different areas. For example, improvements in representaEons of biofilms 

at the pore scale can help inform how we simulate them in reacEve transport models at the Darcy 

and field scales [42-44], or how we model transport of cancer drugs in human Essue [45].  

As computers have become more powerful, allowing for more complex interacEons to be 

simulated at larger scales, a large body of literature invesEgaEng the transport of microbes in 

porous media has recently developed [1-4, 9-13, 19, 21, 29-31, 42, 46-51]. Given the wide variety 

of literature, an almost equally wide variety of mathemaEcal models have been developed to 

simulate various aspects of microbial transport. A brief introducEon to the mathemaEcs of 
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microbe-mediated reacEve transport is given in secEons 1.1.1.1 and 1.1.1.2 of this dissertaEon. 

Studies in this domain range from the micro-scale [52, 53] to the field scale [10, 54]. Micro and 

pore-scale experiments generally involve microfluidic devices, which are Eny (𝜇m to mm range) 

transparent secEons of porous media which contain small channels that allow fluid to be injected 

into the model [53]. Darcy and field scale experiments oSen use column experiments [10], acetate 

injecEon experiments [55], and reacEve transport simulaEons [56, 57] to model transport.  

Microbe-mediated reacEve transport is a highly acEve area of research for two primary 

reasons – the complexity of the interacEons means there are a wide variety of both fundamental 

and applied discoveries sEll to be made, and there is a clear human need for the development of 

beZer tools and more comprehensive theories that describe microbe-mediated reacEons in the 

subsurface. This interacEon is essenEal in environmental sekngs such as the hyporheic zone, 

where groundwater and surface water meet, creaEng a dynamic space for complex 

biogeochemical reacEons [58]. For instance, microbes capable of reducing Cr(VI) to less toxic Cr(III) 

significantly affect the transport of chromium through groundwater systems [59, 60]. 

Understanding these processes is criEcal for fields such as bioremediaEon [61], water quality 

management [62], and nutrient cycling [63]. In addiEon to an increase in our modeling capabiliEes 

of bioremediaEon and nutrient cycling, two things that are of high importance for human 

governments around the world, many general theories and modeling methods of microbe-

mediated reacEve transport can be extended to the human body [64-68]. Some of the most 

important recent research in this domain includes studies that examine the dispersion of bacteria 

around cancerous tumors [69]. Specifically, it has been found that some bacteria, such as 

Salmonella, are aZracted to chemicals emiZed by necroEc regions of tumors and will try to burrow 

towards the middle of the tumor [70, 71]. UlEmately, the depth of our understanding of microbe-
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mediated reacEve transport processes, and our ability to simulate them, has a direct impact on 

our ability to effecEvely manage our environment and develop life-saving medical treatments. 

1.1.1.1 Reac=ve Transport Simula=ons 

General Overview 

ReacEve transport (RT) is the general term used to describe coupling of fluid flow, solute transport, 

and chemical reacEons in porous media. Microbe-mediated reacEve transport can be considered 

a subset of reacEve transport wherein the primary point of invesEgaEon is to understand how 

microbes impact the environment. In natural environments, RT plays a pivotal role in determining 

the fate and distribuEon of nutrients, contaminants, and other chemical species. Models of RT, 

oSen referred to as reacEve transport simulators, integrate hydrodynamic equaEons with 

chemical reacEon networks, allowing researchers to simulate the evoluEon of species 

concentraEons and mineral phases over Eme. RT simulaEons vary widely in terms of the hydro-

biogeochemical and physical phenomena that are represented, but they all follow the same 

general structure and workflow. 

In RT simulators, flow and transport are coupled. For a Darcy-scale (conEnuum) 

simulaEon, Richards’ equaEon is generally used to represent flow, and the advecEon-dispersion 

equaEon (2) is used to represent transport [72]. Richards’ equaEon can be thought of as making 

Darcy’s law, which is a general representaEon of flow though porous media, a funcEon of 

saturaEon. Darcy’s law is given as: 

(1) 𝑞 = −𝐾∇ℎ 

where 𝑞 is the specific discharge, K is the hydraulic conducEvity tensor (k/𝜇), and ∇ℎ is the 

hydraulic head gradient. Making K a funcEon of water saturaEon (𝜃) and splikng up the hydraulic 
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head into pressure head (ℎ) and elevaEon head (𝑧) terms then subsEtuEng this sum into Darcy’s 

law gives 

(2) q = -𝐾(𝜃)∇(ℎ + 𝑧) = −𝐾(𝜃)(∇ℎ + ∇𝑧) 

The conEnuity equaEon, which represents the conservaEon of mass in the domain, is given as 

(3) !"
!#
+ ∇ ∙ 𝑞 = 0 

SubsEtuEng q from (2) into (3) then gives  

(4)  !"
!#
+ ∇ ∙ [𝐾(𝜃)(∇ℎ + ∇𝑧)] = 0 

Expanding the divergence term and introducing the specific moisture capacity 𝐶(ℎ) = − $"
$%

 gives 

(5) 𝐶(ℎ) !%
!#
= ∇ ∙ (𝐾(ℎ)∇ℎ) + &

&'
[𝐾(ℎ)] 

This is commonly referred to as the mixed-form Richards equaEon, which is valid for both 

saturated and unsaturated condiEons [72]. The Richards equaEon can also be represented in 

terms of soil water content (𝜃) by introducing the soil water diffusivity term 𝐷(𝜃) = − ((")$%
$"

 

which gives  

(6) !"
!#
= ∇ ∙ (𝐷(𝜃)∇𝜃) + &+(,)

&'
 

This equaEon allows the simulator to calculate the fluid velocity field throughout the domain by 

solving for K(θ) and subsEtuEng the value into (2). EquaEon (6) is only valid for unsaturated 

condiEons (since in saturated condiEons !"
!#
= 0), meaning equaEon (5) is the more general 

representaEon of Richards’ equaEon. The ADE, on the other hand, governs the transport of 

solutes, and is oSen represented in its simplest 3D form as 

(7)  !-
!#
= −∇ ∙ (𝑣𝐶) + ∇ ∙ (𝐷∇𝐶)  



 

 
15 

Here, 𝐶 is the solute concentraEon, 𝑡 is Eme, 𝑣 is the pore water velocity (derived from Darcy's 

law), and 𝐷 is the hydrodynamic dispersion coefficient tensor. The 1D version of the ADE is given 

by  

(8) 𝑅 !.
!#
= 𝐷 !!.

!/!
− 𝑣 !.

!/
 

Here 𝑅 represents retardaEon, which is a phenomena that describes the interacEons between 

solute parEcles and the solid phase (AKA sorpEon). The retardaEon factor 𝑅 is typically 

determined through laboratory batch or column experiments where both conservaEve and 

reacEve tracers are used to measure the delay in breakthrough curves [73]. For linear sorpEon 

isotherms, 𝑅 can be calculated as 𝑅 = 1 + 0"1#
2

, where 𝜌3 is bulk density, 𝑛 is porosity, and 𝑘$  is 

the soil parEEon coefficient which equals 𝑓4-𝑘4-  where 𝑓4-  is the organic carbon fracEon and 

𝑘4-  is the carbon-water parEEon coefficient [74]. When dealing with nonlinear sorpEon behavior, 

such as Freundlich or Langmuir isotherms, the retardaEon factor becomes concentraEon-

dependent and more complex to determine [75].  The presence of retardaEon effecEvely slows 

down the apparent velocity of the contaminant plume relaEve to the groundwater velocity by a 

factor of 𝑅. For example, if 𝑅 = 2, the contaminant on average moves at half the speed of the 

groundwater, meaning the breakthrough curve is twice as long. Laboratory batch tests to 

determine 𝑘$  values oSen involve mixing known quanEEes of soluEon and solid material, allowing 

equilibraEon, and then measuring final concentraEons to construct sorpEon isotherms [76]. 

The iteraEve soluEon of reacEve transport equaEons involves a complex process of 

stepping through both Eme and space to solve equaEons (2), (5), and (7) (among others). As 

outlined in the pseudocode in Appendix A1, the process begins with iniEalizaEon, sekng up the 

grid dimensions, Eme steps, and iniEal condiEons for concentraEon, water content, and velocity. 

The main simulaEon then proceeds through a series of Eme steps, each involving several key 
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computaEons across the enEre spaEal domain. For each Eme step, the algorithm first solves the 

Richards equaEon to update the water content at every grid point, followed by updaEng the 

hydraulic conducEvity. Next, it computes the Darcy velociEes based on the new water content. 

The core of the simulaEon involves solving the AdvecEon-Dispersion EquaEon (ADE) for solute 

concentraEon, which accounts for advecEon, dispersion, and reacEons in however many spaEal 

dimensions have been prescribed to the domain (up to a max of 3). This step, as shown in A1, 

requires nested loops over all spaEal dimensions, highlighEng the computaEonal intensity of the 

process. ASer updaEng concentraEons, boundary condiEons are applied, and results are output 

at specified intervals. In more complex reacEve transport simulaEons, the concentraEons of many 

species must be computed and the reacEon funcEons have more terms, further increasing 

computaEonal complexity. These reacEons, in turn, can modify physical properEes like porosity 

and permeability, so most reacEve transport simulators will also update the permeability field 

with each temporal iteraEon. 

The pseudocode in A1 demonstrates why speeding up reacEve transport simulaEons is a 

high priority in the field. The nested loops for spaEal dimensions (x, y, and z) within the main Eme-

stepping loop result in a large number of calculaEons for each Eme step. For real-world 

applicaEons with fine spaEal and temporal resoluEons, this can result in long computaEon Emes. 

This computaEonal intensity is further increase when many species with reacEons that depend on 

many other species. Consequently, researchers and developers in the field are conEnually seeking 

ways to opEmize these simulaEons, such as through parallelizaEon [77], adapEve mesh 

refinement [78], reduced order modeling [79], improved numerical schemes [80], adapEve Eme 

stepping [81], and deep learning [82]. These opEmizaEons have allowed, and will hopefully 
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conEnue to allow, researchers to tackle more complex problems and provide Emely insights for 

criEcal environmental and engineering decisions. 

These simulators also incorporate chemical databases containing thermodynamic and 

kineEc data for various reacEons. Geochemical calculaEons are performed to determine 

speciaEon, mineral saturaEon states, and redox condiEons [83, 84]. Different coupling schemes, 

like sequenEal non-iteraEve approaches or global implicit methods, are employed to solve the 

transport and reacEon calculaEons efficiently [85]. The ability to handle mulEphase flow, 

temperature effects, and porosity-permeability feedback are also crucial features in many 

simulators [86]. These allow for modeling more complex scenarios involving mulEple fluid phases, 

temperature-dependent reacEons, and evolving medium properEes. Some of the most popular 

reacEve transport simulaEon frameworks include PFLOTRAN [87], STOMP [88], CrunchFlow [89], 

TOUGHREACT [90], PHREEQC [91], MIN3P [92], and OpenGeoSys [93]. Furthermore, especially 

advanced studies of phenomena not currently represented in these popular models are oSen 

developed through coupling with more advanced computaEonal fluid dynamics models such as 

OpenFOAM [94], or the scale of the complexity of the simulaEon is reduced, allowing the 

simulaEon to be programmed from scratch to invesEgate a single/few RT phenomena. 

Dispersion in Reac=ve Transport 

One of the many complexiEes of reacEve transport simulaEons involves the representaEon of 

dispersion. Dispersion generally describes the spreading of solutes due to the combined effects of 

molecular diffusion and non-uniform flow fields that cause variabiliEes in in the velociEes of solute 

parEcles [95, 96]. Dispersion can be enhanced through phenomena such as parEcle moElity [97], 

density driven flow [98],  soil heterogeneity and anisotropy [99], pore-scale mixing [100], and any 

other phenomena that can increase the variability of solute pathlines, and it can be reduced 
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through high pore-network connecEvity [101], aZachment/adsorpEon [102], and low Peclet 

numbers [103]. The Peclet number, which represents the raEo of advecEve to diffusive transport, 

plays a crucial role in characterizing both microscopic and macroscopic dispersion behavior [103, 

104]. A lower Peclet number means diffusion is the dominant form of transport, and a larger 

number means advecEon is the dominant form of transport. Thus, a greater Peclet number 

generally results in greater dispersion. 

Dispersion (both micro and macro) can be quanEfied in terms of the direcEon of transport 

through the phrases “longitudinal” (in the direcEon of flow), “transverse” (perpendicular to 

direcEon of flow), and “verEcal”. In micro-scale environments, the relaEve amounts of each 

dispersion coefficient are highly dependent on experimental condiEons, such as porous geometry 

and solute parEcle properEes. In macro-scale environments, dispersion is primarily dependent on 

flow and soil condiEons and mainly occurs in the longitudinal direcEon, although these 

generalizaEons are subject to a number of other hydro-biogechemical condiEons. 

At the micro scale, dispersion is primarily governed by the variaEons in streamlines 

followed by parEcles, which are caused by the geometry of the porous medium or properEes of 

the parEcles (such as moElity and aZachment). The flow field is generally solved via the Navier-

Stokes equaEons, and parEcle transport can be solved in a variety of ways. In cases where the 

exact posiEons of the parEcles over Eme are known, such as in chapter 2 of this dissertaEon on 

bacterial transport in microfluidic devices, we can use the second centered moment of the 

posiEons of the bacteria to quanEfy dispersion. When the exact posiEons of the parEcles are not 

known, but the influent and effluent concentraEons are known to allow construcEon of a 

breakthrough curve, then we can use the ADE to approximate dispersion by fikng the 

breakthrough curve to the analyEcal soluEon [105, 106]. However, the ADE is oSen an inadequate 
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representaEon of solute transport, as it only provides an analyEcal soluEon in Fickian regimes. For 

non-Fickian transport, models such as the fracEonal ADE [107] and the conEnuous Eme random 

walk [108] can achieve higher accuracy of breakthrough curve predicEons and effecEve dispersion 

coefficients.  

As briefly discussed above, one common approach to quanEfy dispersion at the micro 

scale is through the second centered moment of the average concentraEon [95, 109]. The second 

centered moment, denoted as 𝜎5(𝑡), is defined as: 𝜎5(𝑡) = ∫[𝑥 − 𝜇(𝑡)]5𝑐(𝑥, 𝑡)𝑑𝑥, where 𝑐(𝑥, 𝑡) 

is the concentraEon of the solute at posiEon 𝑥 and Eme 𝑡, and 𝜇(𝑡) is the first moment (mean 

posiEon) of the concentraEon distribuEon at Eme 𝑡. In chapter 2, we calculate the average spaEal 

variance of bacteria over Eme evolving from a point-like injecEon, akin to the transport Green 

funcEon defined as 𝐷6(𝑡) = 7
89∫ 𝑑𝑦:𝐷6(𝑡, 𝑦:)8

;  [110, 111]. This funcEon describes the 

calculaEon of the effecEve dispersion coefficient across the y-dimension of the domain. It can be 

solved discretely by calculaEng the asymptoEc rate of spreading for each bin comprising the y 

dimension (assuming advecEon is in the x direcEon).  The temporal evoluEon of the second 

centered moment provides valuable insights into the dispersive behavior of the solute plume. In 

the case of Fickian dispersion, where the dispersion coefficient is constant and the advecEon-

dispersion equaEon (ADE) is valid, the second centered moment grows linearly with Eme [112, 

113]. The slope of this linear relaEonship is directly proporEonal to the macroscopic dispersion 

coefficient. However, in heterogeneous media, the assumpEon of Fickian dispersion may not hold, 

parEcularly at early Emes or in the presence of strong heterogeneity [108, 114]. In such cases, 

anomalous (non-Fickian) transport may occur, characterized by non-linear growth of the second 

centered moment with Eme [107, 115].  
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Macroscopic dispersion, also commonly referred to as hydrodynamic dispersion, generally 

emerges as a result of fluid and solute velocity variaEons at larger scales, such as the Darcy and 

field scales [116, 117]. The hydrodynamic dispersion coefficients (in the longitudinal direcEon) are 

calculated as 𝐷/ = 𝐷< + 𝑣𝑎=, where 𝐷< is molecular diffusion, 𝑣 is the seepage velocity, and 𝑎= 

is the longitudinal dispersivity (units of length). The mechanical dispersion term arises from the 

spaEal averaging of pore-scale velocity fluctuaEons, while molecular diffusion is an intrinsic 

property of the solute-fluid system [116, 118]. Thus, in reacEve transport simulaEons, the 

representaEon is determined by the scale. For micro-scale and pore-scale simulaEons, dispersion 

is oSen defined as the average spaEal variance of parEcles over Eme. For Darcy-scale and field-

scale simulaEons, dispersion is oSen defined with this simple funcEon. 

In addiEon to the calculaEon of dispersion coefficients, which allow for calculaEon of 

concentraEons in Eme and space via the ADE or fADE, the temporal evoluEon of dispersion also 

provides a criEcal lens through which to view transport. Over Eme, dispersion in heterogeneous 

media oSen exhibits disEnct pre-asymptoEc and asymptoEc regimes [96, 117]. In the pre-

asymptoEc regime, the dispersive behavior is strongly influenced by the local velocity fluctuaEons 

and the correlaEon structure of the heterogeneous medium [119]. In the asymptoEc regime, the 

dispersive behavior is primarily governed by larger-scale heterogeneiEes such as geological units 

(and other spaEally-large soil properEes), flow inputs, and parEcle behavior (moElity, aZachment, 

etc.). 

In general, both pre-asymptoEc and asymptoEc regimes can be defined as subdiffusive, 

diffusive, superdiffusive, or ballisEc. These regimes are oSen defined through the mean-square 

displacement (MSD). Specifically, in the context of diffusion, the regime is considered subdiffusive 

if $(>?@)
$#

< 1, diffusive if  $(>?@)
$#

= 1, superdiffusive if $(>?@)
$#

> 1, and ballisEc if $(>?@)
$#

≥ 2. 
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Although the MSD can be formulated in a variety of different ways depending on the context of 

use, in the context of diffusion (no advecEon), the second centered moment of an ensemble of 

parEcles is exactly equal to the MSD. Thus, for diffusive regimes, the diffusion coefficient can be 

calculated by sekng the slope of the MSD equal to	 2𝑑𝐷𝑡 [120], where 𝑑 is the number of 

dimensions, 𝐷 is the diffusion coefficient, and 𝑡 is Eme. This can be solved by taking the derivaEve 

on both sides, which gives $(>?@)
$#

7
5$
= 𝐷. Although it is important to understand both the pre-

asymptoEc and asymptoEc behavior, which can reveal phenomena such as confinement, the 

overall transport (effecEve diffusion) is generally defined by the asymptoEc behavior [119, 109]. 

During the early stages of the pre-asymptoEc regime, the solute plume may exhibit 

ballisEc or superdiffusive transport, characterized by a rapid growth of 𝜎5(𝑡) [115, 120]. This 

behavior arises from the coherent moEon of solute parEcles along preferenEal flow paths, leading 

to enhanced spreading [121]. As the plume evolves and samples more of the heterogeneous 

velocity field, the pre-asymptoEc regime may transiEon to a subdiffusive behavior, where the 

growth of 𝜎5(𝑡) slows down [108, 114]. This transiEon from high to low MSD slope is oSen 

emblemaEc of confined transport condiEons. As parEcles spread out over Eme in low-porosity 

media, they are likely to encounter dead-end pores and weakly-connected paths, which causes a 

subsequent decrease in the MSD slope due to what is essenEally a decrease in the degrees of 

freedom of parEcle moEon [122-124]. 

1.1.1.2  Microbial Mo=lity and Bacterial Transport 

Types of Microbial Mo0lity 

Microbial moElity is a field that describes the movements paZerns of all microbes (bacteria, 

viruses, proEsts, algae, fungi, etc.), although the term is generally used to describe the moElity of 
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bacteria. Researchers have idenEfied five general modes of bacterial moElity – swimming, 

twitching, gliding, sliding, and swarming [125]. 

Swimming moElity represents the most well-characterized form of bacterial locomoEon, 

primarily facilitated by rotaEng flagella that act as helical propellers [27, 126, 127], allowing 

bacteria to achieve speeds of up to 500 𝜇𝑚 ∙ 𝑠A7 in liquid environments [128]. Flagella come in 

many different shapes and sizes, but can generally be classified as monotrichous (one flagella), 

amphitrichous (flagella on both ends of the bacterium), lophotrichous (many flagella on one end), 

or peritrichous (many flagella all over the bacterium). When monotrichous flagella are located at 

one of the ends of the major axis of the bacteria, it may be referred to as a polar flagellum [129]. 

Swimming bacteria can respond to various environmental sEmuli through chemotaxis, modulaEng 

their flagellar rotaEon to navigate towards aZractants or away from repellents [130, 131]. The 

ability to swim provides bacteria with considerable advantages in surface colonizaEon [12], biofilm 

formaEon [132], and establishing infecEons in host organisms [133]. 

Twitching moElity consEtutes a disEnct form of bacterial translocaEon dependent on Type 

IV pili (T4P), protein filaments that undergo cycles of extension, substrate aZachment, and 

retracEon [134]. The molecular machinery responsible for twitching comprises a complex 

membrane-spanning apparatus that includes ATPase motors, which power pili extension and 

retracEon through ATP hydrolysis [27]. This form of moElity enables bacterial cells to move across 

solid surfaces at speeds of approximately 0.1-1 μm/s [135], significantly slower than swimming 

but highly effecEve for surface colonizaEon. The coordinated expression and assembly of pili is 

regulated by mulEple environmental signals and integrated into broader cellular processes 

including biofilm formaEon and virulence. Twitching moElity plays a crucial role in host 

colonizaEon by pathogenic bacteria, parEcularly in the early stages of infecEon when bacteria 
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must traverse host Essue surfaces [125, 136]. The biomechanical forces generated during pili 

retracEon can exceed the nanonewton range [137], making twitching a remarkably powerful, 

although generally slow, form of bacterial movement. 

Gliding moElity represents a sophisEcated form of bacterial locomoEon that enables 

directed movement across solid surfaces without convenEonal moElity appendages. This type of 

moElity is parEcularly prevalent among phylogeneEcally diverse bacteria including members of 

the Bacteroidetes phylum, Myxococcales order, filamentous cyanobacteria, and mycoplasmas, 

with each group potenEally employing disEnct molecular mechanisms [138, 139]. Building upon 

this foundaEon, contemporary research has unveiled the intricate biophysical principles governing 

bacterial gliding at the single-cell level. Advanced microscopy and rheological studies have 

demonstrated that successful translocaEon depends on the mechanical properEes of both the 

bacterial cell and its environment [140, 141]. The substrate's physical characterisEcs prove 

parEcularly crucial, as they determine whether movement is primarily driven by cellular 

deformaEon-induced matrix flow caused by slime producEon or by complex interfacial dynamics 

at the bacterial leading edge. This mechanisEc understanding of gliding moElity has broader 

implicaEons for bacterial behaviors including predaEon, development, and biofilm formaEon, 

while also providing insights into how bacteria navigate diverse environmental condiEons. 

Sliding moElity describes a passive form of bacterial surface translocaEon that occurs 

without the use of dedicated moElity structures, where the primary driving force comes from the 

physical pushing of dividing cells against their neighbors [125]. This process manifests differently 

across bacterial species, which can be classified into disEnct groups based on their sliding 

mechanisms. In almost all cases, however, the physical basis of sliding involves the reducEon of 

surface tension through various secreted compounds including biosurfactants (e.g., surfacEn, 
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serrawekn), exopolysaccharides, hydrophobic proteins, and glycopepEdes, which collecEvely 

modify substrate surface properEes [125, 142]. This form of passive moElity, driven by the 

expansive force of cellular reproducEon, proves parEcularly advantageous for bacterial colony 

expansion in environments where acEve moElity mechanisms might be energeEcally unfavorable, 

and its regulaEon involves complex cellular processes that integrate environmental sensing with 

the coordinated producEon of surface-modifying compounds. 

Swarming moElity represents a sophisEcated form of social bacterial movement 

characterized by the rapid and coordinated migraEon of dense populaEons across surfaces [27, 

125, 143]. This process requires flagella and involves a complex differenEaEon process whereby 

vegetaEve cells transform into elongated, hyperflagellated swarmer cells capable of moving in 

mulEcellular groups. The iniEaEon of swarming behavior typically involves sensing appropriate 

environmental condiEons, including surface contact, nutrient availability, and cell density, 

followed by the coordinated expression of genes involved in swarmer cell differenEaEon and 

movement [144]. CriEcal to successful swarming is the producEon of surfactants that reduce 

surface tension and facilitate the expansion of the bacterial populaEon across the substrate. 

Swarming moElity has important implicaEons for bacterial pathogenesis and anEmicrobial 

resistance, as swarming cells oSen display elevated resistance to various anEbioEcs and host 

defense mechanisms [145].  

Bacterial Transport 

The transport of bacteria through fluid environments represents a complex interplay of physical, 

chemical, and biological factors operaEng across mulEple spaEal and temporal scales. At the 

microscale (1-10 μm), bacterial transport is governed by the mechanics of cell moElity [27, 31, 

126], Brownian moEon [27, 146, 147], chemotaxis [13, 15, 16] and cell-surface interacEons [18], 
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while larger scale phenomena (>100 μm) such as advecEon, dispersion, microbial growth/death, 

aZachment rates, and bulk fluid dynamics dominate transport at the macro level [4, 46, 148, 149]. 

The relaEve contribuEon of these mechanisms varies significantly depending on environmental 

condiEons, with the Reynolds number (Re ≈ 10-5 – 10-3 for swimming bacteria) and Péclet number 

serving as criEcal dimensionless parameters that characterize the balance between advecEve and 

diffusive transport processes. In natural systems, bacterial transport is further complicated by 

cellular responses to chemical gradients (chemotaxis), oxygen availability (aerotaxis), and various 

other environmental sEmuli that can modify movement paZerns and influence net displacement.  

The presence of acEve moElity mechanisms also substanEally impacts bacterial transport 

dynamics and populaEon distribuEons. Flagellar swimming, which generates speeds of 1-500 

μm/s [128], enables enhanced diffusion coefficients of moEle bacteria that typically range from 

10-6 to 10-5 cm²/s, which is about 1000x greater than the typical diffusion coefficients for non-

moEle cells [150]. Surface-associated moElity modes demonstrate disEnct transport 

characterisEcs: twitching (0.1-1 μm/s) [135] facilitates surface colonizaEon through pili-mediated 

movement, gliding (1-10 μm/s)[151] enables translocaEon along surfaces without appendages, 

and swarming (2-10 μm/s)[152] promotes rapid populaEon-scale movement across surfaces. 

These various moElity mechanisms exhibit disEnct responses to fluid flow, with swimming cells 

demonstraEng rheotaxis (orientaEon with respect to flow) and complex trajectories arising from 

the interplay between self-propulsion and ambient flow fields [27, 125]. For example, swimming 

bacteria oSen exhibit upstream migraEon in shear flows and accumulaEon near surfaces due to 

hydrodynamic interacEons [153]. 

In porous media, bacterial transport is governed by mulEple retenEon and mobilizaEon 

mechanisms operaEng simultaneously. Physical straining occurs when cells become trapped in 
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pore throats smaller than a criEcal size (which primarily depends on the raEo of average pore 

throat size to bacteria size), while physiochemical filtraEon processes include van der Waals forces, 

electrostaEc interacEons, and hydrophobic effects that promote aZachment to grain surfaces [4, 

18, 19]. Fluid shear stress also impacts bacterial transport, resulEng in phenomena such as shear 

trapping [147] and colonizaEon of surfaces [12]. The efficiency of these shear and retenEon-based 

mechanisms depend strongly on cell size, shape, and surface properEes (e.g., lipopolysaccharides, 

extracellular polymeric substances), as well as the pore space geometry and chemical condiEons 

(pH, ionic strength) of the system.  

Chemotaxis significantly modulates bacterial transport behavior through the generaEon 

of directed movement along chemical gradients [15-17]. This process operates through a well-

characterized signal transducEon pathway involving methylaEon-dependent adaptaEon, which 

allows bacteria to respond to relaEve changes in chemoeffector concentraEons over several 

orders of magnitude [154]. The impact of chemotaxis on transport is oSen quanEfied using the 

chemotacEc sensiEvity coefficient 𝜒;, which can range from 10AB to 10AC cm²/s depending on the 

species and chemoaZractant [155, 156]. In flowing systems, the interplay between chemotaxis 

and fluid flow creates complex transport phenomena, including the formaEon of bacterial plumes 

and bands that can significantly enhance dispersion rates. These effects are parEcularly 

pronounced in the presence of sharp chemical gradients, where the chemotacEc driS speeds 

(typically 0.1-2.5 𝜇m/s) can become comparable to or exceed the fluid velocity [157]. In addiEon, 

chemotaxis can dramaEcally influence bacterial transport through porous media by promoEng 

aZachment or detachment from surfaces based on local chemical condiEons.  

The impact of bacterial transport extends across numerous pracEcal applicaEons in both 

engineered and natural systems. In environmental engineering, bacterial transport models inform 
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bioremediaEon strategies and the design of water treatment systems. These applicaEons oSen 

involve complex geometries and heterogeneous environments where tradiEonal conEnuum 

models may break down, necessitaEng mulEscale approaches that bridge molecular, cellular, and 

populaEon-level dynamics. In addiEon to the research discussed above on transport in porous 

media and chemotaxis, recent studies have highlighted sophisEcated behaviors such as surface 

sensing [158], collecEve moEon [159, 160], and adaptaEon to mechanical and chemical 

constraints [161-163]. These insights are parEcularly relevant for understanding biofilm formaEon, 

infecEon processes, and microbial ecosystem dynamics in natural environments such as soil, 

groundwater, and marine systems, where bacterial transport plays a crucial role in nutrient cycling 

and ecosystem funcEon. 

 

Mathema0cs of Microbial Mo0lity and Bacterial Trasnport 

The mathemaEcal descripEon of bacterial moElity spans mulEple scales, from individual cell 

dynamics to Darcy-scale behavior. Although some mathemaEcal descripEons of twitching exist, 

this dissertaEon secEon only provides a brief overview of some of the most relevant swimming-

based models. At the microscale, the Langevin equaEon is oSen used to describe the movement 

of Lagrangian parEcles [164, 165]. 

(9)   $/(#)
$#

= 𝑣[𝑥(𝑡)] + 𝜉(𝑡)√2𝐷 

where v is the velocity of the parEcle at posiEon 𝑥 during Eme 𝑡, 𝜉(𝑡) is a Gaussian white noise 

vector, and D is the molecular diffusion coefficient. This equaEon captures the inherent Brownian 

moEon of bacteria, although it is a rough approximaEon of overall moElity. To beZer represent 

moElity, we can adjust the Langevin equaEon to represent run and tumble moEon. Many 

Langevin-type representaEons of moElity have been designed by researchers over the years to 



 

 
28 

beZer approximate bacterial moEon. One example represents the Langevin equaEon as a 

potenEal differenEal [166] 

(10)   �̇� = − $D
$/
+ 𝜂/(𝑡) 

where �̇� is rate of change of posiEon $/
$#

, 𝜂/(𝑡) is the gaussian noise funcEon, and U is a 

phenomenological potenEal funcEon described as 

(11)   𝑈(𝑥) = 𝑈; − 𝜌 R𝑥 −
E
F
cosh(𝛿𝑥)X 

where 𝑈; is an adjustable constant and the tuning parameters 𝜌, 𝛾, and 𝛿 are used to define the 

run and tumble states of the bacteria according to the relaEonship 𝜌5𝛿Z1 + 𝛾5 = 𝐶. C is a 

constant and 𝜌(𝛿, 𝛾) = 1 during tumbling and 𝜌(𝛿, 𝛾) > 1 during runs. More detailed run and 

tumble parameters are described through a control parameter 𝛽(𝛿, 𝛾). The inclusion of 𝛽 and 

steady speed 𝑣G in the Langevin equaEon for speed leads to 

(12)   �̇� = −𝜆;(𝛽)[𝑣 − 𝑣G(𝛽)] + 𝜂H(𝑡) 

where 𝜆;(𝛽) is the inverse of the characterisEc run and tumble Emes, 𝜏. The soluEon for equaEon 

(13) for the condiEon of 𝑣(𝑡;) = 𝑣; is the given as  

(13)   𝑣(𝛽, 𝑡) = 𝑣G(𝛽) + [𝑣; − 𝑣G(𝛽)]𝐺H
(I)(𝑡, 𝑡;) + ∫ 𝜂H(𝑠)𝐺H

(I)(𝑡, 𝑠)𝑑𝑠#
#$

 

 where 𝐺H
(I) is the green funcEon for run and tumble moEon defined as 

(14)    𝐺H
(I)(𝑡, 𝑡:) = 𝑒A

%&'&(%
)(+)  

In porous media, the Langevin approach is refined to account for a variety of dispersion-related 

phenomena [31]. A useful descripEon of the 1D streamwise moEon of non-moEle bacteria known 

as the conEnuous Eme random walk approach (CTRW) can be formulated discretely as  

(15) 𝑥2J7 = 𝑥2 +
KG
L

 ,      𝑡2J7 = 𝑡2 +
KG
H-
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where the transiEon length Δ𝑠 represents the incremental distance that a bacterial cell travels 

along its actual path through the porous medium, and the advecEve tortuosity 𝜒 represents how 

much the trajectory of a parEcle deviates from a straight line and is defined as the total distance 

traveled by a parEcle divided by its displacement. To account for the run and tumble moElity of 

bacteria, this approach is further amended to include trapping Eme 𝜏. 

(16)  𝑥2J7 = 𝑥2 +
KG
L

 ,      𝑡2J7 = 𝑡2 +
KG
H-
+ 𝜏 KG

H-
 

The principle of this model is that bacteria randomly aZach to grain surfaces and will remain on 

the surface for a certain amount of Eme before moving (either due to moElity or external forces). 

The modeling of trapping Emes is sEll an acEve area of research, but may be exponenEally 

distributed as 𝜓(𝑡) =
MNOPA &

).
Q

R.
.  

For chemotacEc populaEons, the Keller-Segel model [167] offers a conEnuum descripEon 

that has become fundamental in understanding bacterial paZern formaEon and biofilm 

development. The Eme-dependent density of cells 𝜌(𝒓, 𝑡), assuming no changes due to cell 

growth and death, can be modeled as [168] 

(17)   𝜕#𝜌(𝒓, 𝑡) + ∇ ∙ 𝒋(𝒓, 𝑡) = 0 

where the flux of cells is 𝒋(𝒓, 𝑡) = 𝒋(𝒓, 𝑡)$STTUGSV2 + 𝒋(𝒓, 𝑡).%6<V#W/SG.  𝒋(𝒓, 𝑡)$STTUGSV2 is defined 

as −𝐷1∇ρ where 𝐷1 is the macroscopic diffusion coefficient, and 𝒋(𝒓, 𝑡).%6<V#W/SG is defined as 

ρ𝑣.%6<V#W/SG. Here, 𝑣.%6<V#W/SG is the velocity of bacteria due to chemotaxis, also known as the 

chemotacEc driS velocity, which is defined as 𝑣.%6<V#W/SG = 𝜒(𝑐)∇𝑐 where c is concentraEon and	

𝜒(𝑐) is the chemotacEc sensiEvity. Using these relaEonships to develop a reacEon-diffusion 

equaEon results in  

(18)   𝜕#𝜌 = 𝐷1∇5𝜌 − ∇[𝜌𝜒(𝑐)∇𝑐	] 

(19)   𝜕#𝑐 = 𝐷.∇5𝑐 + ℎ𝜌 − 𝑘𝑐 
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where ℎ𝜌 and 𝑘𝑐 account for producEon and consumpEon of the chemotacEc species. These two 

equaEons are thus referred to as the Keller-Segal model. 

At the Darcy scale, bacterial transport is commonly described using modified forms of the 

AdvecEon-Dispersion EquaEon (ADE) that incorporate biological processes and 

aZachment/detachment kineEcs. The 1D ADE for microbial transport in a saturated, 

homogeneous porous medium can be formulated in simple terms as [46] 

(20)   𝑅 !-
!#
+ 1#

X
!?
!#
= 𝐷 !!-

!/!
− 𝑣 !-

!/
 

where S is the aZached microbe concentraEon, D is the hydrodynamic dispersion coefficient, v is 

microbial velocity, R is the retardaEon factor, 𝜌3 is the bulk density, and 𝜀 is the bed porosity. 

KineEc aZachment and detachment rates are used to represent the 1#
X
!?
!#

 term in the equaEon 

(21)   1#
X
!?
!#
= 𝑘W##𝐶 −

1#
X
𝑘$6#𝑆 

where 𝑘W## =
Y(7AX)H
5$.

𝜂;𝛼. This formula comes from the domain of colloid filtraEon theory. Here, 

𝑑.  is the average grain size, 𝜂; is known as the single-collector contact efficiency, and 𝛼 is the 

aZachment collision efficiency. EquaEon (20) is a relaEvely accurate representaEon of the 

subsurface transport of bacteria in fully saturated condiEons. However, transport oSen takes place 

in unsaturated condiEons and thus depends on air-water exchange.  A more complex 1D formaEon 

of microbial transport in porous media for mulEphase flow can be given as [148] 

(22)   !".-
!#

+ 𝜌3
!?
!#
+ !Z/0[

!#
= !

!\
h𝜃.𝐷

!-
!\
i − !].-

!\
+ 𝐵8 

Where C is the microbe concentraEon in the aqueous phase, 𝜃.  is the volumetric water content 

available for microbes, S is the microbe concentraEon in the solid phase, 𝐴W8 is the interfacial 

area per unit volume, Γ is microbe concentraEon in the gaseous phase, 𝑞.  is the volumetric water 
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flux density for colloids, and 𝐵8 is a source/sink term that represents microbial growth and death 

in the aqueous phase.  

 The mathemaEcal frameworks presented here, ranging from microscale Langevin 

descripEons of individual bacterial moEon to Darcy-scale transport equaEons, demonstrate the 

complex mulEscale nature of bacterial transport in porous media. While these models have 

proven valuable in describing various aspects of bacterial movement and transport, significant 

challenges remain in bridging scales and incorporaEng the full complexity of biological responses, 

parEcularly in heterogeneous environments. Future work will likely focus on developing more 

sophisEcated hybrid approaches that can beZer couple individual bacterial behavior with 

populaEon-scale phenomena while maintaining computaEonal tractability. AddiEonally, the 

incorporaEon of emerging understanding about bacterial surface interacEons, biofilm formaEon, 

and collecEve behavior will conEnue to refine these mathemaEcal descripEons. 

1.1.1.3 Growth and Dynamics of Biofilms 

Biofilms are communiEes of microorganisms that aZach to surfaces and surround themselves with 

a self-produced sEcky matrix substance. These microbial communiEes are ubiquitous in nature 

and can be found virtually anywhere moisture and nutrients are available, from tooth surfaces 

[169] to deep ocean hydrothermal vents [170]. The development of biofilms follows disEnct 

stages: iniEal surface aZachment, microcolony formaEon, maturaEon, and dispersal [171]. Surface 

aZachment is mediated by specific adhesins and regulated by intracellular signaling molecules, 

parEcularly cyclic-di-GMP, which serves as a master regulator in the transiEon from planktonic to 

sessile states [172]. Upon aZachment, bacteria iniEate the producEon of extracellular polymeric 

substances (EPS), creaEng a complex matrix that comprises polysaccharides, proteins, 



 

 
32 

extracellular DNA, and lipids [173]. This matrix may account for up to 90% of the mass of the 

biomass, with the mass of the actual cells comprising the other 10% [173]. 

The biofilm matrix serves mulEple criEcal funcEons beyond structural support. Cross-

linked polymers within the matrix create a complex three-dimensional architecture featuring 

water channels that facilitate nutrient transport and waste removal [174-177]. Furthermore, the 

biofilm matrix, with its negaEvely charged eDNA, has been shown to bind to posiEvely charged 

anEbioEcs, thereby reducing there efficiency in penetraEon and subsequent destrucEon of the 

biofilm [178]. The matrix composiEon demonstrates remarkable plasEcity, with bacteria modifying 

EPS producEon in response to environmental condiEons including hydrodynamic condiEons [179], 

temperature, pH, and nutrient availability [180]. This adaptability enables biofilms to maintain 

structural integrity and funcEon across diverse environments. 

SpaEotemporal organizaEon within biofilms exhibits sophisEcated paZerns driven by both 

chemical and physical factors. Chemical gradients of oxygen, nutrients, and signaling molecules 

create disEnct microenvironments that influence bacterial metabolism and gene expression [181]. 

These gradients can lead to metabolic straEficaEon, with aerobic processes generally dominaEng 

in upper regions (due to more O2 and light) and anaerobic processes occurring in deeper layers. 

PopulaEon-level coordinaEon is achieved through quorum sensing networks, which regulate gene 

expression based on cell density through small diffusible molecules [182]. MulEple quorum 

sensing circuits may operate simultaneously, enabling fine-tuned responses to environmental 

condiEons [183]. 

In medical contexts, biofilms present significant challenges due to their enhanced 

resistance to anEmicrobial treatments. This resistance arises through mulEple mechanisms: 

physical protecEon by the EPS matrix [178], altered metabolic states within the biofilm [184], and 
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the emergence of persister cells that can survive high anEbioEc concentraEons [185, 186]. Biofilms 

are implicated in a large number of human diseases, including caries, gingiviEs, periodonEEs, lung 

infecEons, catheter-based infecEons, eye infecEons, and medical device-associated infecEons 

[187]. Novel therapeuEc approaches targeEng biofilm-specific mechanisms are being developed, 

including matrix-degrading enzymes [188, 189], quorum sensing inhibitors [190], and surface 

modificaEons that prevent iniEal aZachment [191]. 

In porous media systems, biofilm growth creates complex feedback loops between 

biological acEvity and physical transport processes. As biofilms develop, they can significantly 

reduce pore spaces, which alters flow paZerns and creates preferenEal flow channels [192, 193]. 

This modificaEon of the pore structure influences both hydraulic conducEvity and solute transport 

pathways. As a simple consequence of the Bernoulli principle, local flow velociEes can significantly 

increase in channels adjacent to biofilm-occupied pores, while becoming negligible in fully blocked 

pores. These hydrodynamic changes affect nutrient delivery and waste removal, creaEng spaEal 

heterogeneiEes in biofilm growth and metabolism. 

The mechanical properEes of biofilms in porous media depend strongly on flow condiEons 

and nutrient availability. When biofilms are exposed to shear stresses of about 0.01 to 1 Pa, 

chemical signaling between cells results in rapid adaptaEons that oSen take the form of increased 

EPS producEon [194]. Shear forces at criEcal thresholds (typically 0.1-1 Pa) can cause periodic 

sloughing events, where porEons of the biofilm detach and are transported downstream, 

potenEally colonizing new regions [195, 196]. In terms of nutrient availability, organic carbon 

[197], phosphate, and calcium [198] concentraEons have been determined to be primary limiEng 

factors of biofilm growth. 
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In subsurface environments, biofilm-mediated processes significantly influence 

biogeochemical cycling and contaminant fate and transport. Within the hyporheic zone, biofilms 

create reacEve hotspots where enhanced mixing between surface water and groundwater 

streams promotes rapid nutrient transformaEon [199-201]. Biofilm development also affects 

hyporheic exchange flows by modifying both the hydraulic conducEvity and reacEve surface area 

of the sediment. Studies have shown that mature biofilms can significantly reduce hydraulic 

conducEvity, thereby altering residence Eme distribuEons and reacEon kineEcs [202-204]. 

The influence of biofilms on reacEve transport processes extends beyond simple flow 

modificaEon. The EPS matrix acts as a selecEve barrier that can concentrate certain solutes while 

excluding others, creaEng unique microenvironments for chemical reacEons. Metal ions, for 

example, can accumulate within the matrix at concentraEons much higher than the bulk fluid due 

to binding with negaEvely charged EPS components [205, 206]. This concentraEon effect, 

combined with the diverse metabolic capabiliEes of biofilm communiEes, enables efficient 

transformaEon of various contaminants including heavy metals, organic pollutants, and pesEcides. 

Biofilm growth in reacEve transport models is typically represented through coupled 

equaEons describing biomass accumulaEon and fluid flow. A common approach is the 

mulEspecies biofilm model introduced by Wanner and Gujer [207] and detailed by Wang and 

Zhang [208]. A conEnuum descripEon of biofilm can be given as: 
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where the i subscript corresponds to the specific biofilm species, 𝑓 is the volume fracEon, 𝜇𝑜 is 

the specific growth rate, 𝜌 is the biofilm density, and g is the mass flux of the biofilm. This flux can 

be expressed as 𝑔S(𝑡, 𝑧) = 𝑢(𝑡, 𝑧)𝜌S𝑓S(𝑡, 𝑧). SubsEtuEng this into equaEon (9) yields 
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Which allows us to establish a relaEonship between the volume fracEon of biofilm and flow speed. 

Summing over all microbial species and integraEng over the verEcal dimension then gives us the 

fluid velocity at the film-water interface of the biofilm as a funcEon of thickness (L). 

 (25)    𝑢= = ∫ �̅�𝑜(𝑡, 𝑧:)𝑑𝑧:=
; + 𝜎(𝑡) 

where 𝜎(𝑡) is defined as the exchange velocity between the biofilm and the bulk liquid. More 

sophisEcated models incorporate biofilm mechanical properEes, detachment due to shear stress, 

moElity of dispersed cells, and equaEons for substrate interacEons [209]. 

1.1.1.4 Nutrient Cycling and Biomass Growth in the Hyporheic Zone 

Introduc0on and Historical Context of the Hyporheic Zone 

The hyporheic zone represents the dynamic interface beneath and alongside stream beds where 

shallow groundwater and surface water mix. This region was first conceptualized by Orghidan in 

1959 as an intersEEal habitat with disEnct fauna [210], but its significance in ecosystem 

funcEoning wasn't fully appreciated unEl decades later when the hyporheic zone came to be 

known as a criEcal ecotone linking surface and groundwater systems [211]. Early studies also 

demonstrated the zone's crucial role in organic maZer processing and nutrient retenEon [212] and 

revealed complex paZerns of nitrificaEon and denitrificaEon [213]. 

As research progressed, Boulton and colleagues synthesized knowledge on hyporheic 

zone hydrology, emphasizing how flow paths and residence Emes determine biogeochemical 

transformaEons [214]. The integraEon of molecular techniques in the early 2000s highlighted 

complex spaEal organizaEons of biofilms in streambed sediments and their fundamental role in 

carbon and nitrogen cycling [215]. Around this Eme the concept of hyporheic "hot moments" - 

periods of intense biogeochemical acEvity – was also introduced, emphasizing the temporal 
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dynamics of nutrient cycling and how hydrological events and seasonal changes alter 

biogeochemical processes [216]. 

The funcEonal significance of the hyporheic zone has become increasingly apparent 

through studies demonstraEng its role in ecosystem processes ranging from nutrient 

transformaEon to contaminant degradaEon. Recent work by RiZmann and McCarty has 

emphasized how understanding microbial growth and yield in these systems is crucial for 

developing accurate reacEve transport models [217]. This understanding becomes parEcularly 

important when predicEng ecosystem responses to perturbaEons and opEmizing bioremediaEon 

strategies in complex environmental systems. Other recent studies have idenEfied the hyporheic 

zone as an important source of methane and carbon dioxide [218, 219]. 

Physical and Hydrological Controls  

The physical and hydrological characterisEcs of the hyporheic zone fundamentally control its 

biogeochemical funcEoning. Flow magnitude and direcEon significantly influence these processes. 

Research has revealed disEnct paZerns in gaining streams, where hyporheic flux points upward 

from groundwater, versus losing streams, where it points downward from river water [220]. These 

flow paZerns create unique chemical environments, as river water typically contains higher 

concentraEons of bioavailable carbon and dissolved oxygen, leading to greater biomass growth in 

losing streams [212, 214]. 

Flow dynamics operate across mulEple scales, from pore-scale processes to reach-scale 

exchange paZerns. Studies have shown that higher flow velociEes enhance nutrient and oxygen 

transport, potenEally supporEng greater steady-state biomass concentraEons, though excessive 

speeds can cause biomass scouring [21, 215, 221]. However, research from chapter 5 of this 

dissertaEon indicates weaker correlaEons between biomass and verEcal (-.09) and longitudinal 
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(.02) velociEes than previously thought, which highlights the difficulty in predicEng general 

relaEonships between processes in the hyporheic zone. 

Under high flow condiEons, microbial communiEes exhibit remarkable adaptaEons. 

Specifically, bacteria have been shown to increase extracellular polymeric substances (EPS) 

producEon, forming stronger biofilms resistant to erosion [221, 222]. The EPS matrix serves 

mulEple funcEons beyond structural stability, including nutrient and enzyme retenEon, creaEng 

favorable microenvironments for microbial growth. These adaptaEons are parEcularly important 

in systems experiencing variable flow regimes, where maintaining aZachment and metabolic 

funcEon under changing condiEons is crucial [222]. 

Factors Impac=ng Biomass Growth in the Hyporheic Zone 

Temperature propagaEon through the hyporheic zone, influenced by flow paZerns, creates 

disEnct thermal regimes that affect microbial community structure and funcEon. Seasonal 

temperature variaEons have been shown to lead to shiSs in microbial community composiEon 

[223]. Furthermore, temperature has been show to generally impact a variety of biogeochemical 

process rates, including organic maZer decomposiEon and nutrient cycling [224]. The thermal 

characterisEcs of the hyporheic zone are parEcularly important in the context of climate change, 

as temperature shiSs can fundamentally alter microbial community structure and funcEon. 

Temperature fundamentally controls microbial metabolism and growth through mulEple 

simultaneous mechanisms. Ratkowsky and colleagues established that while mesophilic bacteria 

thrive between 20-45°C, disEnct adaptaEons enable psychrophiles and thermophiles to funcEon 

effecEvely outside this range [225]. Morita's research on psychrophilic bacteria revealed 

specialized adaptaEons allowing growth below 20°C [226], while Schoolfield et al. demonstrated 
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that growth rate-temperature relaEonships typically follow modified Arrhenius kineEcs, with rates 

approximately doubling for every 10°C increase unEl reaching an opEmal temperature [227].  

At a molecular scale, deviaEons beyond opEmal temperatures lead to protein 

denaturaEon, enzyme inacEvaEon, and membrane damage [228]. Furthermore, temperature not 

only influences cellular components but also substrate diffusion rates and enzyme kineEcs, 

creaEng complex feedback loops in microbial growth responses [229]. These temperature-

dependent processes become parEcularly relevant in the hyporheic zone, where thermal 

gradients can create disEnct zones of microbial acEvity. 

The influence of pH on bacterial growth extends beyond simple growth rate effects. While 

most species prefer condiEons between pH 6.5-7.5, Horikoshi's work on alkaliphiles demonstrated 

remarkable adaptaEons allowing growth in extreme pH condiEons [230]. Furthermore, studies 

have shown how pH affects mulEple cellular processes simultaneously, including membrane 

transport, protein stability, energy metabolism, and cell wall integrity [231]. Thus, changes in 

environmental pH require significant energy expenditure to maintain the normal funcEon of these 

cellular processes (i.e., cellular homeostasis), reducing growth efficiency and yield [232].  

The relaEonship between nutrient availability and microbial growth, iniEally described by 

Monod's classical equaEon [233], has been significantly refined through modern research. 

Following work challenged the concept of fixed growth constants, suggesEng instead an 

"uncertainty principle" in bacterial growth kineEcs that beZer reflects the complexity of natural 

systems [234]. Furthermore, invesEgaEons into nutrient-limited transport revealed how bacteria 

respond to nutrient limitaEons through various adapEve mechanisms, including changes in cell 

size, morphology, and metabolic pathways [235]. 
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Oxygen availability dramaEcally influences bacterial growth paZerns in the hyporheic 

zone. Aerobic bacteria typically require dissolved oxygen levels above 2 mg/L for opEmal growth 

[236]. Without oxygen, anaerobic bacteria may sEll thrive, although they generally exhibit lower 

growth rates due to less efficient energy generaEon pathways [237]. Bacterial respiratory systems 

have also shown remarkable flexibility, with many bacteria being able to adapt to varying oxygen 

levels by modifying their respiratory chains or switching between aerobic and anaerobic 

metabolism [238]. Stolper and colleagues further demonstrated that some bacteria can maintain 

aerobic metabolism at extremely low oxygen concentraEons - as low as nanomolar levels - through 

specialized high-affinity oxidases [239]. This adaptability becomes parEcularly important in the 

hyporheic zone, where oxygen gradients can shiS rapidly with changes in flow condiEons. 

Environmental stressors significantly impact microbial growth and community structure. 

Studies have detailed how heavy metals can inhibit growth through mulEple mechanisms, 

including direct enzyme inhibiEon, membrane damage, DNA/RNA damage, and oxidaEve stress 

[240]. However, many bacteria have also developed various resistance mechanisms to metal 

toxicity [241]. 

CompeEEon between bacterial species adds another layer of complexity to community 

dynamics. Direct compeEEon for nutrients, producEon of inhibitory compounds, and modificaEon 

of shared environments have been shown to influence community structure [242]. Hibbing et al. 

further elaborated on bacterial compeEEon strategies, demonstraEng how bacteria may respond 

through enhanced substrate uptake systems, producEon of anEmicrobial compounds, or 

metabolic specializaEon [243]. 

Temporal and Seasonal Dynamics 
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Temporal variaEons in hyporheic zone processes create disEnct paZerns of biogeochemical 

acEvity. During summer months, warm temperatures propagate throughout the hyporheic zone, 

increasing growth rates [221, 222]. Winter condiEons lead to reduced growth due to cold 

temperature propagaEon, though research has shown that specialized cold-adapted communiEes 

can maintain significant acEvity [244]. 

Nonperennial streams present unique challenges for microbial communiEes. Dry periods 

oSen create isolated pools with varied redox condiEons [245], resulEng in the development of 

specialized microbial populaEons in these environments [246]. These condiEons can favor 

anaerobic processes such as denitrificaEon [247] and iron reducEon processes [248]. Microbes in 

nonperennial stream have also shown special adaptaEons that allow them to go dormancy during 

dry events and reemerge during wekng events, thus sEmulaEng rapid changes in microbial 

community composiEon and funcEon [249]. 

 

1.1.2 Particle Tracking 

1.1.2.1 Introduc=on and Fundamental Concepts 

ParEcle tracking, the analysis of video data to reconstruct object or organism trajectories, has 

become an essenEal quanEtaEve tool across scienEfic disciplines, from biology and physics to 

environmental science and engineering. The foundaEonal framework for modern parEcle tracking 

emerged through Crocker and Grier's seminal work, which introduced a robust algorithm for 

linking parEcle posiEons across video frames by minimizing total squared displacement [250]. This 

approach provided soluEons for key challenges in parEcle tracking, including noise handling, 

parEcle density limitaEons, and posiEon linking across frames. 

The technical challenges in parEcle tracking arise from several key factors that must be 

addressed simultaneously. First, the accurate detecEon of parEcles requires sophisEcated image 
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processing to disEnguish true parEcles from noise and background variaEons. Second, the linking 

of parEcle posiEons between frames becomes increasingly complex with higher parEcle densiEes 

and faster movement speeds. Third, measurement uncertainEes and detecEon failures must be 

handled robustly to maintain tracking accuracy over long trajectories. These challenges have 

driven the development of increasingly sophisEcated algorithms and methodologies [251, 252]. 

The evoluEon of experimental techniques, parEcularly in microscopy and video 

technology, has conEnuously expanded tracking capabiliEes. Super-resoluEon microscopy 

techniques, exemplified by Betzig's work, pushed the boundaries of spaEal resoluEon in parEcle 

detecEon [253], while improvements in high-speed imaging enabled the capture of rapid 

dynamics previously impossible to resolve. These technological advances have been 

complemented by the development of sophisEcated tracking algorithms, including mulEple 

hypothesis tracking (MHT) and probabilisEc data associaEon filters (PDAF), which have 

significantly improved tracking reliability in complex environments [252, 254]. 

1.1.2.2 Development of Tracking Algorithms 

The evoluEon of parEcle tracking algorithms reflects the increasing complexity of tracking 

applicaEons and the need for robust performance under challenging condiEons. The earliest 

successful approaches relied on nearest-neighbor linking methods, but these proved insufficient 

for dense parEcle fields or complex moEons. A significant advance came with the development of 

global linking strategies that consider mulEple frames simultaneously to opEmize trajectory 

reconstrucEon [250]. These methods minimize the global displacement across all possible parEcle 

matches, significantly improving tracking accuracy in complex scenarios.  

MulEple hypothesis tracking (MHT) represented a major algorithmic breakthrough, 

parEcularly for biological applicaEons. Jaqaman and colleagues demonstrated that MHT could 
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effecEvely handle parEcle merging and splikng events, temporary parEcle disappearance, and 

dense parEcle fields [252]. The method works by maintaining mulEple possible trajectory 

hypotheses and selecEng the most probable set of tracks based on all available informaEon, 

making it parEcularly robust for tracking in biological systems where object interacEons are 

common and frequent. The probabilisEc data associaEon filter (PDAF) approach, adapted for 

biological applicaEons by Smal et al., provided a framework for explicitly handling measurement 

uncertainEes [254]. This method is parEcularly valuable when tracking parEcles in low signal-to-

noise condiEons or when dealing with closely spaced targets. PDAF works by compuEng 

associaEon probabiliEes between measurements and tracks, allowing for mulEple potenEal 

measurement-to-track assignments and effecEvely handling uncertainty in the measurement 

process. 

Some of the biggest breakthroughs in imaging techniques for parEcle tracking revolve 

around 3D tracking [258-260]. 3D tracking is technically challenging due to the algorithmic 

complexity of matching trajectories, fundamental difficulEes in accurate depth determinaEon and 

parEcle localizaEons, and increased computaEon Eme. Furthermore, 3D tracking, especially in 

porous media, represents a challenging problem due to the refracEon of light around clear, 

syntheEc grains, which may obfuscate or distort bacteria [2, 259, 260]. 

Comprehensive evaluaEon efforts have been crucial in understanding the strengths and 

limitaEons of different tracking approaches. Chenouard et al.'s objecEve comparison of parEcle 

tracking methods provided the first standardized assessment of various algorithms across different 

experimental condiEons [255]. This work established benchmark datasets and evaluaEon metrics 

that conEnue to guide algorithm development and selecEon for specific applicaEons. Recent 
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algorithmic developments have focused on improving computaEonal efficiency and robustness 

while maintaining high accuracy in challenging scenarios [256, 257]. 

1.1.2.3 Applica=ons in Environmental Science 

ParEcle tracking methods have become fundamental tools for studying transport phenomena in 

environmental systems, parEcularly in porous media where complex geometry and flow paZerns 

significantly influence parEcle and microorganism movement. The applicaEon of these techniques 

has enabled direct observaEon of processes previously only understood through bulk 

measurements or theoreEcal predicEons [251]. High-speed imaging combined with sophisEcated 

tracking algorithms has revealed detailed dynamics of both abioEc parEcle transport and 

microbial moElity in these complex environments. 

In the study of solute transport, parEcle tracking methods have provided unprecedented 

insights into the spaEal heterogeneity of porous media flow. By tracking individual parEcles or 

fluorescent tracers, researchers can directly observe preferenEal flow paths, stagnaEon zones, and 

mixing behavior at the pore scale [254, 255]. These observaEons have proven crucial for validaEng 

and refining theoreEcal models of dispersion and mixing in porous media, parEcularly in systems 

where tradiEonal bulk measurements fail to capture important local phenomena. 

The applicaEon of parEcle tracking to microbial systems has revoluEonized our 

understanding of bacterial transport and behavior in environmental contexts. These methods 

enable researchers to analyze individual bacterial trajectories, revealing how moElity paZerns 

change in response to environmental gradients, flow condiEons, and surface interacEons [215]. 

ParEcularly valuable has been the ability to disEnguish between acEve bacterial movement and 

passive transport, providing insights into how microorganisms navigate and colonize porous 
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environments. The integraEon of tracking techniques with microfluidic devices has allowed for 

controlled studies of bacterial behavior under various environmental condiEons [223]. 

For biofilm studies, parEcle tracking has enabled detailed invesEgaEon of the early stages 

of bacterial aZachment and colonizaEon. By tracking individual cells as they transiEon from 

planktonic to sessile states, researchers can beZer understand the mechanisms controlling biofilm 

formaEon and development [225]. These observaEons have pracEcal implicaEons for various 

environmental applicaEons, from bioremediaEon to the management of bacterial fouling in 

industrial systems. 

1.1.2.4 Current Challenges and Future Direc=ons 

Several key challenges persist in parEcle tracking applicaEons, parEcularly for environmental 

systems where complex geometries, mulEple scales of moEon, and variable imaging condiEons 

create significant technical difficulEes. One fundamental challenge involves maintaining tracking 

accuracy when parEcles or organisms move across different focal planes or temporarily disappear 

from view, especially in three-dimensional porous media systems [255]. The development of more 

robust algorithms for handling these scenarios remains an acEve area of research, with recent 

work focusing on probabilisEc methods that can maintain track conEnuity despite temporary loss 

of informaEon [252, 256]. 

Technical advances in imaging capabiliEes conEnue to drive new applicaEons in 

environmental science. High-speed cameras with improved sensiEvity and resoluEon enable 

tracking of faster processes and smaller objects, while advances in 3D imaging techniques [258] 

allow for beZer characterizaEon of transport in complex porous media. Future areas of research 

also include automaEc analysis pla�orms, more robust comparisons between different PT 
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algorithms, and deep learning models for both the segmentaEon of parEcles and linking of 

trajectories. 

 

1.1.3 Deep Learning for Particle Tracking and Reactive Transport 

1.1.3.1 Introduc=on and Fundamental Deep Learning Concepts 

Deep learning has emerged as a transformaEve tool in scienEfic compuEng, parEcularly for 

analyzing complex physical systems and processing large-scale experimental data. The foundaEons 

for these advances were established through breakthroughs in neural network training 

methodologies, including efficient backpropagaEon algorithms and GPU acceleraEon [261]. The 

2012 ImageNet compeEEon marked a pivotal moment when convoluEonal neural networks 

(CNNs) demonstrated unprecedented performance in image recogniEon tasks [262], catalyzing 

widespread adopEon across scienEfic domains. 

The applicaEon of deep learning to scienEfic problems has been enabled by several key 

technological developments. First, the development of specialized architectures like region-based 

CNNs and the YOLO (You Only Look Once) framework provided efficient tools for real-Eme object 

detecEon [263]. Second, the introducEon of self-supervised learning approaches, exemplified by 

Momentum Contrast (MoCo) [264] and SimCLR [265], enabled effecEve learning from unlabeled 

data - a crucial capability for scienEfic applicaEons where labeled data is oSen scarce. These 

advances have proven parEcularly valuable in environmental science and hydrology, where 

complex, high-dimensional problems demand sophisEcated analyEcal approaches. 

Recent reviews have highlighted how deep learning is also revoluEonizing microscopy and 

parEcle tracking applicaEons [266]. The key advantage of deep learning approaches lies in their 

ability to handle noise, variability, and complex backgrounds while maintaining high processing 

speeds. These capabiliEes have proven especially valuable in biological imaging, where tradiEonal 
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methods oSen struggle with low signal-to-noise raEos and variable imaging condiEons. They have 

shown parEcular promise for the segmentaEon and localizaEon of cells/parEcles, but have only 

shown mild benefits for the task of trajectory linking/extracEon. 

1.1.3.2 Deep Learning Methods in Par=cle Detec=on and Tracking 

The integraEon of deep learning into parEcle tracking has revoluEonized our ability to analyze 

complex dynamic systems at mulEple scales. A significant breakthrough came with Newby et al.'s 

work using CNNs to detect and track parEcles in dense suspensions, demonstraEng superior 

detecEon performance compared to tradiEonal methods, parEcularly in challenging scenarios 

with high parEcle density and low signal-to-noise raEos [267]. This approach has since been 

expanded through various specialized architectures and methodologies designed specifically for 

biological and physical applicaEons. 

Recent advances in deep learning-based tracking have addressed several key technical 

challenges. Yao and colleagues developed sophisEcated data associaEon methods that 

significantly improve tracking accuracy in complex biological environments [268]. Their approach 

specifically tackles the challenging problem of linking parEcle detecEons across frames, a criEcal 

issue in biological tracking applicaEons. Spilger et al. further advanced the field by introducing a 

deep parEcle tracker specifically designed for fluorescence microscopy, demonstraEng robust 

performance across varying imaging condiEons [269]. 

The applicaEon of deep learning to live-cell imaging has enabled unprecedented insights 

into cellular dynamics. Song et al. developed automated mulEdimensional tracking systems 

capable of following parEcle movement in living cells with high precision [270], while RiZer and 

colleagues enhanced parEcle detecEon and tracking capabiliEes in fluorescence microscopy 
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through specialized neural network architectures [271]. These advances have been parEcularly 

valuable for studying bacterial moElity and cellular transport processes. 

Cell tracking and lineage reconstrucEon represent another fronEer where deep learning 

has made significant impacts. Moen et al. demonstrated accurate cell tracking and lineage 

construcEon in live-cell imaging experiments [272], while Lugagne and colleagues developed 

DeLTA, an automated system for cell segmentaEon, tracking, and lineage reconstrucEon [273]. 

These tools have proven invaluable for studying bacterial populaEon dynamics and cell-cell 

interacEons in complex environments. 

1.1.3.3 Physics-Informed Neural Networks and Reac=ve Transport 

The integraEon of physical principles with deep learning architectures has created powerful new 

tools for modeling transport phenomena. Physics-informed neural networks (PINNs), introduced 

by Raissi et al., provide a framework for incorporaEng physical laws directly into neural network 

architectures [274]. This approach ensures that predicEons respect fundamental physical 

constraints while leveraging the flexibility and computaEonal efficiency of deep learning models. 

Kang et al. extended this concept by coupling generaEve adversarial networks with physics-driven 

models for inverse groundwater modeling [275], demonstraEng improved predicEons of 

contaminant transport in heterogeneous aquifers. 

Recent advances in reacEve transport modeling have focused on bridging scales and 

reducing computaEonal costs. You and Lee developed deep learning methods for upscaling 

reacEve transport models from pore-scale to conEnuum-scale [276], while Wang and Bakato 

created a framework specifically for modeling reacEve transport and mineral precipitaEon in 

fracture-matrix systems [277]. These approaches have significantly reduced computaEonal 

requirements while maintaining accuracy. Leal et al. demonstrated the power of machine learning 
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for acceleraEng chemical equilibrium calculaEons in reacEve transport modeling [278], while 

Prasianakis et al. developed neural network approaches for process coupling and parameter 

upscaling [279]. 

The applicaEon of deep learning to mulEphysics problems has enabled new approaches 

to complex system modeling. Jagtap et al. developed a framework to capture mixing paZerns in 

reacEve-transport systems [280], while Lu et al. created data-informed emulators for mulE-physics 

simulaEons [281]. These advances have been parEcularly valuable for environmental applicaEons, 

where mulEple physical and chemical processes interact across different scales. Recent work by 

Basha et al. has further advanced the integraEon of machine learning with physics-driven 

modeling for mulEphase systems [282]. 

1.1.3.4 Advanced Architectures and Mul=physics Applica=ons 

Advanced neural network architectures have emerged as powerful tools for modeling complex 

physical systems. Graph neural networks, as demonstrated by Sanchez-Gonzalez et al., have 

proven parEcularly effecEve for modeling many-body systems and parEcle interacEons [283]. The 

transformer architecture, introduced by Vaswani et al. [284], has been adapted to capture long-

range dependencies in parEcle trajectories and chemical reacEon networks, enabling more 

accurate predicEons of system behavior over extended Eme periods. 

GeneraEve models have found novel applicaEons in environmental and physical modeling. 

Laloy et al. demonstrated the use of spaEal generaEve adversarial networks for creaEng 

geologically realisEc permeability fields [285], while recent climate modeling work by Yu et al. has 

shown how deep learning can emulate high-resoluEon physics in hybrid mulE-scale simulators 

[286]. These approaches have been parEcularly valuable for generaEng realisEc subsurface 

property fields and modeling complex environmental systems. 
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The applicaEon of deep learning to computaEonal fluid dynamics and mulEphysics 

simulaEons has seen significant advances. Obiols-Sales et al. developed CFDNet, demonstraEng 

substanEal acceleraEon of fluid simulaEons through deep learning [287], while Koric and 

Abueidda applied deep learning sequence methods to mulEphysics modeling of materials 

processes [288]. Gunawardena et al. extended these approaches to atmospheric transport models 

[289], showing how machine learning emulaEon can effecEvely capture complex spaEal 

deposiEon paZerns. Mo et al. demonstrated the use of deep convoluEonal encoder-decoder 

networks for uncertainty quanEficaEon in dynamic mulEphase flow [290], while recent work has 

focused on developing hybrid approaches that combine the efficiency of deep learning with the 

physical accuracy of tradiEonal numerical methods. These developments have enabled new 

applicaEons in environmental monitoring, industrial process opEmizaEon, and scienEfic discovery. 

1.1.3.5 Current Applica=ons and Future Direc=ons 

Deep learning applicaEons in parEcle tracking and reacEve transport conEnue to expand, driven 

by both technological advances and pracEcal needs. In biological imaging, recent developments 

have enabled automated analysis of increasingly complex cellular behaviors. The integraEon of 

deep learning with tradiEonal microscopy has enhanced our ability to track mulEple parEcles 

simultaneously while maintaining high temporal and spaEal resoluEon [265, 270]. These advances 

have proven parEcularly valuable for studying bacterial moElity paZerns, cell-cell interacEons, and 

biofilm formaEon dynamics in real-Eme. 

The coupling of machine learning with physics-based modeling represents a rapidly 

evolving fronEer. Recent work has demonstrated significant progress in developing hybrid 

approaches that combine the computaEonal efficiency of neural networks with the physical 

accuracy of tradiEonal numerical methods [281, 282]. These hybrid models are parEcularly 
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promising for environmental applicaEons, where complex mulEscale processes must be simulated 

efficiently. Emerging research focuses on developing interpretable deep learning models that can 

provide insights into the physical mechanisms underlying observed phenomena while maintaining 

computaEonal tractability. 

Several key challenges and opportuniEes in this domain include the development of self-

supervised and few-shot learning approaches to address the scarcity of labeled data in scienEfic 

applicaEons, integraEon of uncertainty quanEficaEon in deep learning predicEons for improved 

reliability in scienEfic applicaEons, creaEon of scalable architectures capable of handling 

increasingly large and complex datasets, and development of physics-informed approaches that 

can effecEvely bridge mulEple spaEal and temporal scales [276, 277]. The future of this field 

appears to be moving toward increasingly sophisEcated hybrid approaches. These include the 

development of neural network architectures that can automaEcally map and incorporate physical 

laws [278, 279], the use of reinforcement learning for opEmizing experimental designs, and the 

applicaEon of federated learning techniques for collaboraEve modeling of reacEve transport 

processes. As computaEonal capabiliEes conEnue to advance, these methods are expected to 

enable new insights into complex environmental and biological systems that were previously 

difficult to study. 

 
 
1.2 Purpose and Scope 

1.2.1 Original Intent 

The original intent of this research was to explore and develop scalable models for microbe-

mediated reacEve transport processes, specifically focusing on bacterial moElity, chemotaxis, and 

bacterial transport at the pore and field scales. Our hypothesis was (and sEll is) that an improved 
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understanding of these processes and the development of more accurate models would allow us 

to gain further insight into the complex interacEons between hydrodynamics, microbial moElity, 

and biofilm structure in porous media. 

The study was iniEally designed to invesEgate how different microbial species contribute 

to reacEve transport, parEcularly in subsurface environments where fluid flow and chemical 

gradients play a significant role in determining microbial acEvity and nutrient cycling. By 

integraEng experimental observaEons with computaEonal models, the goal was to provide 

mechanisEc insights into microbial moElity, biofilm development, and their collecEve impact on 

reacEve transport. Specifically, our intent for future chapters was to upscale our experimental 

results at the micro scale to the pore and field scales, thus enhancing models of microbial moElity 

across all scales. In addiEon, we sought to invesEgate the impact of micro-scale moElity processes 

on field-scale bioremediaEon, which is a phenomena that is currently poorly understood. 

1.2.2 Broadening of Scope 

As the research progressed, it became clear that addiEonal complexiEes related to microbial 

behavior and environmental condiEons necessitated a broadening of the original scope. While the 

iniEal focus was on microbial moElity across a range of scales, the research expanded to include 

more comprehensive analyses of parEcle tracking, biomass growth in the hyporheic zone, and 

deep learning tools for parEcle tracking and reacEve transport simulaEon upscaling. 

One of the key reasons for the broadening of scope was the fact that our micro-scale 

research turned out to be more challenging than what was originally predicted. These challenges 

primarily revolved around difficulEes in image analysis that required the development of a novel 

background subtracEon algorithm and experimentaEon with numerous parEcle tracking methods. 

This delay in the producEon of results shiSed our Emeline. Furthermore, we realized that our 
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experiments with comparing the performance of mulEple parEcle tracking algorithms had 

produced interesEng results that were worth trying to publish. Rather than conEnue with our 

original plans to move on to upscaling our micro-scale results to the pore scale, we decided to 

pursue the research that was ready to go.  

ASer two and a half years of my PhD, both of these chapters were nearly complete, and 

the next object of our focus was to incorporate the results from our micro-scale invesEgaEons of 

microbial moElity into field-scale reacEve transport simulaEons. The plan for this chapter was to 

use published research on field scale bioremediaEon that uses some reacEve transport simulator 

to model the in-situ data. By adapEng the model previously used in the published research to 

include microbial moElity parameters, we hoped to gain insight into how bacterial moEon impacts 

the fit between the model and the experimental data. However, due to a variety of complicaEons, 

we ulEmately weren’t able to achieve these goals. One of the primary barriers we faced is that 

there is only one study we could find that has both in-situ data and a reacEve transport model in 

a well-supported framework for bioremediaEon at the field scale [291]. To further complicate 

maZers, the model was originally created in STOMP. However, STOMP is a proprietary code that 

requires a license to run, meaning we needed to port the simulaEon to PFLOTRAN. We spent 

mulEple months trying to rewrite the simulaEon in PFLOTRAN, but were ulEmately unable to 

reproduce the Eme series from the published research given the complexiEes of the reacEons that 

were modeled. Luckily, we were able to pivot our objecEves as we were working on this chapter 

that never came to be, which resulted in a significant broadening of scope. We sEll wanted to 

explore microbe-mediate reacEve transport processes at large scales, which resulted in our pivot 

to invesEgate the feedback mechanisms of biomass growth in the hyporheic zone and the velocity-

based decay of biomass. Although this chapter no longer uses our micro-scale research to improve 
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Darcy and field-scale reacEve transport simulaEons, we calibrated our velocity-based biomass 

decay based on others’ micro-scale research, thus compleEng our objecEve to upscale microbial 

physics in some way. 

In addiEon to our pivot in large-scale studies of microbial physics, we also acEvely decided 

to look for applicaEons of deep learning within our research. Specifically, we idenEfied significant 

gaps in the literature for applicaEons of deep learning to parEcle tracking and reacEve transport 

upscaling. Thus, two chapters of this dissertaEon are devoted to applicaEons of deep learning 

within the broad domain of microbe-mediated reacEve transport. Although other direcEons may 

have provided for more thorough invesEgaEons of microbial moElity or reacEve transport 

modeling, the expansion of this dissertaEon through comparaEve analysis and deep learning tools 

provides for a much more rigorous analysis of parEcle tracking, which is the primary tool used to 

understand microbial moElity. Furthermore, this broadening of scope increases its relevancy to a 

wider audience and provides more points to design further studies from. 

1.2.3 Organization of Disseration 

This dissertaEon is organized into 7 separate chapters. Chapter 1 is the current chapter, which 

gives readers most of the background knowledge needed to understand the contribuEons of the 

dissertaEon (chapter 1). This introducEon was created with the intenEon of being an in-depth 

summary of the basic theories explored throughout this dissertaEon. Instead of providing 

introducEons that thoroughly link the concepts of each chapter, this introducEon serves to 

establish current knowledge of these links, and the concluding chapter is used to link the different 

results of each chapter in the context of the studies cited in this introducEon. If readers find 

themselves confused about chapter progression, they should refer back to the abstract and 

introducEon. ASer the background and literature review, the introducEon conEnues with secEons 
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detailing the original plans for the thesis, the broadening of its scope over Eme, the organizaEon 

of the dissertaEon (this secEon), which provides an overview of each chapter along with a 

conceptual diagram of the whole dissertaEon (Fig. 1), and the primary contribuEons it delivers to 

the research community. 

 

Figure 1. Conceptual diagram of the applica3ons of the various chapters of this disserta3on. Chapter 2 
focuses on microbial mo3lity, chapter 3 focuses on par3cle tracking (with applica3ons to chapter 2), chapter 
4 focuses on a novel deep learning model (named DeepTrackStat) for the extrac3on of mo3on sta3s3cs from 
videos of dispersing par3cles (with applica3ons to chapters 2 and 3), chapter 5 focuses on the incorpora3on 
of novel physics in reac3ve transport simula3ons, and chapter 6 focuses on the deep-learning-based 
upscaling of reac3ve transport simula3ons. Chapter 6 also shares similari3es with chapter 4 with regards to 
using deep learning to process spa3otemporal inputs, and chapter 2 contains informa3on that, while not 
explicitly used in this disserta3on for chapter 5, may be used to improve the reac3ve transport simula3ons 
featured in chapter 5. Chapter 4 is shaded a different color (orange) because although it was developed for 
micro-scale applica3ons (yellow), it may also be applied to videos of par3cle transport at larger scales (red). 
These chapters act to improve various aspects of microbe-mediated reac3ve transport, culmina3ng in a 
disserta3on that contains a variety of new tools and insights that may be used to help improve 
environmental management strategies. 
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The dissertaEon then moves to an invesEgaEon of the advecEon-dominated transport 

dynamics of pili and flagella-mediated moEle bacteria in porous media (chapter 2). This chapter 

focuses on understanding the dynamics of bacterial transport in microfluidics experiments for 

three different species of moEle bacteria under varying flow rates and porosiEes. In this chapter 

bacterial transport is characterized through turn angle and speed distribuEons, mean square 

displacements, and dispersion coefficients. Furthermore, OpenFOAM simulaEons are used to 

model the Eulerian flow field of our microfluidic geometries to allow for comparison between the 

bacterial speed distribuEons and the speed distribuEons of the flow fields. The results of this 

chapter show that higher flow rates suppress bacterial moElity, leading to advecEon-dominated 

transport, where bacterial moEon is primarily driven by the flow of fluid.  Furthermore, it is shown 

that at high flow speeds bacteria with peritrichous flagella maintain their moElity characterisEcs 

to a higher degree than bacteria with monotrichous flagella or pili do. 

Next, the dissertaEon presents an evaluaEon of parEcle tracking (PT) codes used for 

dispersing parEcles in porous media (chapter 3). Specifically, this chapter primarily invesEgates 

tracking performance for parEcles in similar environments to our microfluidic experiments 

performed in chapter 2. Using a suite of classical and experimental comparison staEsEcs, and 

visual analysis of trajectories, this chapter provides a rigorous comparison between four different 

PT algorithms: V-TrackMat, TrackMate-Kalman, TrackMate-LAP,  and Trackpy. The results of this 

chapter show the importance of a wholisEc and task-relevant approach to using staEsEcal 

comparisons to measure differences in PT algorithm performance. Concomitantly, these results 

highlight the poor performance of all PT algorithms in situaEons of high speed, high density 

parEcle simulaEons, and further show the impact of this poor performance on staEsEcs relevant 

for bacterial transport.  
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In response to the challenges idenEfied in parEcle tracking, this dissertaEon next 

introduces DeepTrackStat, an end-to-end deep learning framework for the extracEon of moEon 

staEsEcs from videos of parEcles (chapter 4). DeepTrackStat (DTS) is designed to automate and 

enhance the process of generaEng speed, velocity component, and turn angle staEsEcs, 

parEcularly in complex and high-speed environments where tradiEonal methods fall short. The 

deep learning framework efficiently processes large datasets, allowing for fast and accurate 

moEon extracEon from videos of dispersing parEcles in porous media. To make DTS as robust as 

possible, it was trained on variaEons in flow/moEon type and speed, and parEcle density, shape, 

brightness. We show that DTS generally performs beZer and is also faster than classical parEcle 

tracking algorithms. Furthermore, DTS shows especially good performance for high-speed 

parEcles. 

Next, this dissertaEon explores nutrient cycling and speed-based biomass decay in the 

hyporheic zone (chapter 5). Using 344 different simulaEons of biomass growth in the hyporheic 

zone, this chapter presents a comprehensive sensiEvity analysis of the major feedback cycles 

present. Furthermore, this chapter presents a sensiEvity analysis of speed-based biomass decay, 

finding that the calibrated parameters are not very sensiEve, but that weakly cohesive biofilm 

connecEons, represented by a low value of our parameter 𝛽, will significantly impact biomass 

growth. In this chapter we further invesEgate general trends of our simulaEons in relaEonship to 

chromium reducEon. Overall, we find that reducEon is primarily dominated by abioEc processes, 

but that biomass growth can lead to reducEon hotspots.  

One of the limitaEons idenEfied in chapter 5 is that many of the simulaEons are only for 

a small 1x2 meter scale, which reduces the generalizability of the results. To address this concern, 

and make general improvements to reacEve transport modeling, chapter 6 of this dissertaEon 
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details the development of STAMNet, a spaEotemporal aZenEon-based neural network for 

upscaling reacEve transport simulaEons. STAMNet overcomes the tradiEonal computaEonal 

limitaEons of reacEve transport simulaEons by leveraging deep learning to capture the 

spaEotemporal dependencies in reacEve transport processes. The network is trained to recognize 

paZerns at a 1x2 meter scale and use them to predict behavior at a 1x20 meter scale, offering a 

significant improvement in simulaEon efficiency compared to RT simulators. STAMNet was applied 

to scenarios involving biomass growth and the transport of contaminants like chromium (Cr(VI)), 

demonstraEng its capability to handle real-world environmental problems. By incorporaEng a 

novel spaEotemporal aZenEon mechanism, STAMNet was able to focus on the most relevant 

spaEal and temporal features, providing more accurate predicEons of large-scale transport 

phenomena than other simpler neural architectures could. 

Chapter 7 then presents a summary of the informaEon in, and synthesis of the 

relaEonships between, the five primary chapters (chapters 2-6), then finishes with the conclusion 

of this dissertaEon. This chapter discusses how the dissertaEon as a whole contributes to 

advancements in microbial transport understanding, parEcle tracking methodologies, and reacEve 

transport modeling. Furthermore, this chapter highlights our contribuEons from the micro-scale 

to the field scale, discusses relevant contribuEons to bioremediaEon, and gives a road map for 

potenEal future research. This dissertaEon is then concluded with a summary, and a discussion of 

limitaEons and future work. UlEmately, this dissertaEon was created to provide researchers with 

new theories, models, and tools surrounding microbe-mediated reacEve transport, with the hope 

that these advancements will allow for further development of knowledge in this domain. 

 

1.2.4 Research Contributions 
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This dissertaEon makes several significant contribuEons across different areas of microbe-

mediated reacEve transport, parEcle tracking, and deep learning, advancing both theoreEcal 

understanding and pracEcal applicaEons. The key contribuEons are outlined below: 

1. Microbial Mo0lity in Porous Media 

a. Comprehensive Analysis of Mul4ple Bacterial Species: Prior studies oSen focused on a 

single bacterial species or simplified flow condiEons. This dissertaEon advances the 

field by directly comparing the moElity of bacteria with different mechanisms (e.g., 

flagella, pili) under various flow rates and pore geometries. This comparaEve study 

enhances the understanding of microbial behavior in a variety of flow condiEons and 

provides criEcal insights into how diverse bacterial communiEes may behave in 

subsurface condiEons. Specifically, this chapter shows that bacteria with peritrichous 

flagella maintain their moElity characterisEcs at higher flow speeds than bacteria 

without flagella and with monotrichous flagella. 

b. Linking Microscale Behavior to Macroscale Transport: The idenEficaEon of a transiEon 

from moElity-driven to advecEon-dominated transport at higher flow rates bridges 

the gap between small-scale bacterial behavior and larger-scale transport 

phenomena. This is crucial for developing accurate upscaling techniques, informing 

when simplified, advecEon-based models are appropriate for describing bacterial 

transport in high-flow scenarios. 

2. Par0cle Tracking in Porous Media 

a. Comprehensive Evalua4on of Par4cle Tracking Methods: This dissertaEon evaluates 

mulEple parEcle tracking (PT) algorithms across a wide range of flow condiEons for 

transport of parEcles in porous media. By rigorously comparing tracking methods 

under complex scenarios, this work offers valuable guidance for researchers in 
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selecEng appropriate tracking methods, designing experimental setups, and making 

appropriate performance comparisons for the tracking of dispersive parEcles in 

porous media. 

b. Development of DeepTrackStat: The creaEon of DeepTrackStat, a class-based 

ensemble deep learning framework, represents a significant advancement in the 

general field of parEcle tracking. DeepTrackStat is specifically designed for the 

extracEon of moEon staEsEcs, meaning it does not allow for trajectory reconstrucEon 

like tradiEonal parEcle tracking methods do. However, for the task of moEon staEsEc 

extracEon, it overcomes many limitaEons of tradiEonal PT methods. It dramaEcally 

enhances the speed and accuracy of extracEng moEon staEsEcs from parEcle videos, 

especially for high-parEcle-speed scenarios, meaning it is a powerful tool that 

researchers can add to their parEcle tracking toolbox. 

3. Nutrient Cycling and Biomass Growth in the Hyporheic Zone 

a. Coupling Physical, Chemical, and Biological Processes: This research provides a 

comprehensive analysis of feedback cycles in the hyporheic zone, explicitly 

considering the interacEons between flow condiEons, nutrient availability, and 

biomass growth. This holisEc approach goes beyond previous studies, which oSen 

considered these factors in isolaEon, advancing the understanding of nutrient cycling 

and biomass dynamics in criEcal environmental interfaces. 

b. Refining Paradigms in Chromium Reduc4on: The finding that abioEc processes 

generally dominate chromium reducEon in high-nutrient scenarios refines the exisEng 

paradigm of the compeEEon between abioEc and bioEc reducEon. Furthermore, the 

finding that high biomass concentraEons result in hot spots of chromium reducEon 

adds addiEonal nuance to our understanding of chromium remediaEon. These 
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insights underscore the importance of considering both bioEc and abioEc pathways 

in contaminant models, especially for the design of more effecEve remediaEon 

strategies for redox-sensiEve contaminants. 

4. Reac0ve Transport Simula0ons 

a. Introducing a Velocity-Based Biomass Decay Model: The development of a velocity-

based biomass decay model used within PFLOTRAN is a significant contribuEon to the 

general field of reacEve transport simulaEons (and specifically for the sub-field of 

microbe-mediated reacEve transport). It captures the influence of fluid shear on 

biofilm stability and growth, which has oSen been oversimplified in prior research. 

This more realisEc representaEon of biofilm dynamics is crucial for accurately 

predicEng contaminant fate, transport and nutrient cycling in flowing subsurface 

systems. 

b. Crea4on of STAMNet for Scalable Simula4ons: Another major contribuEon of this 

dissertaEon is the development of STAMNet, a spaEotemporal aZenEon-based neural 

network for reacEve transport simulaEons. STAMNet addresses one of the most 

persistent challenges in the field—scaling models to field-relevant sizes without losing 

important spaEal and temporal details. By capturing complex dependencies in 

reacEve transport processes, STAMNet opens new possibiliEes for efficient, large-

scale simulaEons. 

c. Applying Deep Learning for Physical Upscaling: The use of deep learning for physically 

meaningful upscaling is another notable contribuEon of this dissertaEon. STAMNet 

demonstrates that deep learning can maintain criEcal spaEal and temporal 

relaEonships in reacEve transport processes, something oSen lost in more simplified 
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upscaling methods. This advancement extends the growing field of deep learning 

applicaEons in environmental science and geosciences. 

These contribuEons represent significant advancements in microbial moElity research, parEcle 

tracking methodologies, large-scale simulaEon models, and understanding the dynamic processes 

in the hyporheic zone. UlEmately, this dissertaEon provides a robust framework for future 

research and pracEcal applicaEons in the general fields of environmental management and 

bioremediaEon. 
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Chapter 2: Advection-Dominated Transport Dynamics of Pili and Flagella-
Mediated Motile Bacteria in Porous Media 

 
2.1 Abstract 

The transport of moEle bacteria in porous media is highly relevant to many fields, ranging from 

ecology to human health. SEll, criEcal gaps remain in our understanding of the impacts of moElity, 

hydrodynamics, and pore structure on bacterial transport. Here, we present direct visualizaEons 

of three species of moEle bacteria under variable flow rates and porosiEes. We find that at higher 

flow rates, moElity is less criEcal to the transport of bacteria, as moEon is controlled by 

hydrodynamic advecEon, making it difficult for bacteria to move across streamlines. We show that 

this lack of moEon across streamlines results in increased velocity autocorrelaEon and bacterial 

spreading in the direcEon of flow. Furthermore, we find that transport of bacteria with different 

moElity types are impacted by flow rates to different extents. At low flow rates, the transport of 

bacteria with pili-mediated twitching moElity is strongly controlled by advecEon, whereas bacteria 

with flagella sEll display acEve moElity. At higher flow rates, we show that bacteria with 

peritrichous flagella maintain their moElity characterisEcs to a greater degree than bacteria with 

pili or monotrichous flagella. We also examine experimental net speeds of bacteria in relaEon to 

the simulated flow fields and find that the interacEons between hydrodynamics, moElity, and 

porous media geometry lead to oversampling of medium-velocity regions of a pore network by all 

three species. The study presents new perspecEves on how different types of moEle bacteria are 

transported and dispersed in porous media aided by strength of differenEally advecEng fluid.  
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2.2. Introduction 

MoEle bacteria oSen live in dynamic flow environments, and their migraEon involves complex 

self-propulsion strategies that are relevant to human health and ecology [1–3]. NavigaEng 

confined spaces of a pore network, moEle bacteria employ diverse movement modaliEes (e.g., 

turn angles, run-and-tumble, or run-and-flick) that characterize their migraEon [4–9]. In porous 

media, the degree of confinement (i.e., porosity) and speed of the fluid flow strongly affect 

bacterial migraEon and modulate their interacEons with the surrounding environment. This, in 

turn, has a broad range of effects on bacteria, such as altering their movement [10], behavior [11], 

resource acquisiEon [12], and signaling [13], thereby influencing their metabolic funcEons, spaEal 

distribuEon, and diversity. SpaEal variaEons in flow velociEes and the related changes in shear add 

another level of complexity to the transport of bacteria. Transverse movement of bacteria from 

low-shear to high-shear regions located near surfaces has been shown to result in the 

accumulaEon of cells in low-velocity regions [14, 15]. This phenomenon, termed shear trapping, 

has been idenEfied as one major mechanism that drives iniEal colonizaEon of curved surfaces and 

microfluidic pore channels [16–18], leading to the formaEon of suspended biofilm structures [19, 

20]. While these observaEons have led to improvements in our understanding of bacterial 

transport in idealized systems, there are significant gaps in our ability to quanEfy and predict 

transport behavior under complex condiEons, such as in pore networks designed to produce the 

hydrodynamics of natural porous media. Understanding the moEle behavior of bacteria in 

confined environments, in which they search for available physical space and move in response to 

fluid flow, has implicaEons for a wide range of applicaEons, such as bioremediaEon [21], biofilm 

formaEon [22, 23], and anEcancer drug delivery [24]. 
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In this chapter, we report direct bacterial transport visualizaEons, at single-cell resoluEon, 

of three different species of moEle bacteria under variable flow condiEons in a quasi-2D porous 

media with different levels of pore confinement. Recent research conducted in microfluidic porous 

chips has shown that while transport of non-moEle bacteria is compact giving rise to a Gaussian 

distribuEon of traveled distances (i.e., follows streamlines with negligible retardaEon due to mass 

exchanges between fast and slow moving zones), the distribuEon of moEle strains in the pore 

spaces show both acEve retenEon and enhanced dispersion due to exchanges between fast flow 

channels and low velocity regions closer to the grain surfaces [17, 25]. The presented work here 

examines the transport dynamics of three moEle species with an overarching goal of highlighEng 

key staEsEcal differences in various transport metrics so that more informed modeling approaches 

can be developed for upscaled transport simulaEons. Having an improved understanding of 

dispersion rates and of the key factors that control dispersion, such as the velocity and turn angle 

distribuEons, would provide robust ingredients for development of random walk based 

approaches [25]. We focus on invesEgaEng Acidovorax strain JHL-9 [26], Geobacter sulfurreducens 

[27], and Paenibacillus strain 300A [28] due to their common aZribute of metal-reducing 

capabiliEes. By studying these specific microorganisms, our research findings are especially 

relevant to bioremediaEon and biogeochemical cycling in terrestrial environments [29-31]. 

Furthermore, our selecEon of these species is based on their disEnct modes of moElity. Using their 

pili to aZach to surfaces and pull themselves towards new locaEons [32], Geobacter 

sulfurreducens exhibit twitching moElity [33]. Paenibacillus 300A exhibit swimming moElity, 

presumably driven by peritrichous flagella [34]. Acidovorax JLH-9 [26] exhibit twitching moElity, 

consistent with genomic analysis of the strain, though transmission electron microscopy (TEM) 

images of the strain suggest the presence of polar/monotrichous flagella, indicaEng the possibility 
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of swimming moElity as well. Swimmers generally move much faster than twitchers [32, 35-37], 

providing a reasonable basis in this study to compare the two different moElity types at different 

flow rates. The primary focus of this dissertaEon chapter is not to decipher the fundamental 

reasons for differences in the transport behaviors of the three selected species, but rather to 

evaluate transport characterisEcs of bioremediaEon relevant species with different moElity types 

in order to help lay a framework for species-aware upscaling and macroscale transport 

simulaEons.  

We find that regardless of the moElity type, as flow rates increase, individual cells have 

trouble in moving across streamlines, resulEng in weaker coupling between bacterial moElity and 

their overall transport characterisEcs. We show that as flow speed increases, bacteria disperse 

faster in the direcEon of flow, due to a lower likelihood of moEon across streamlines and an 

increase in longitudinal displacement driven by differenEally advecEng fluid in a porous 

environment. In other words, the distance between individual cells grows at a fast rate since cells 

are less likely to make transverse movements (i.e., displacements across streamlines), and are 

more likely to move longitudinally at a range of velociEes produced by the parabolic nature of 

laminar flow profiles. Furthermore, we show that the moElity of Paenibacillus is less impacted by 

flows in porous media than the moEliEes of Geobacter and Acidovorax, highlighEng the strength 

of peritrichous flagella-driven moElity. AddiEonally, we provide evidence that moEle bacteria tend 

to oversample medium-velocity zones in porous media for the flow condiEons tested in our 

experiments. This work thus provides an improved picture of the transport of moEle bacteria in 

confined porous media under variable flow rates, especially in relaEon to the impact of flow on 

different moElity types, with implicaEons for several applicaEons where an understanding of pore-

scale transport and upscaling of bacterial transport is desired. 
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The work presented in the chapter is an enhanced version of the in-review arEcle: 

“Berghouse, M. Perez, L.J., Plymale, A., Scheibe, T., & Parashar, R. AdvecEon-Dominated Transport 

Dynamics of Pili and Flagella-Mediated MoEle Bacteria in Porous Media. So9 Ma;er. 2024.” 

Specifically, more informaEon is provided in the discussion about the limitaEons of the research 

with respect to parEcle tracking, which is the primary moEvaEon for chapters 3 and 4 of this 

dissertaEon, and more informaEon is provided about the potenEal ways in which our work can 

contribute to mathemaEcal descripEons of bacterial transport. 

 

2.3. Materials and Methods 

2.3.1 Bacterial Transport in Microfluidic Devices 

To invesEgate the impacts of porosity, flow rate, and moElity on bacterial transport, we recorded 

high-resoluEon videos of three species of bacteria swimming in microfluidic devices [2,000 mm 

width × 20 mm height (𝑤 × ℎ)] at flow rates of 0 µL/h (no flow), 1 µL/h and 5 µL/h. The chosen 

flow rates allow for comparaEve analyses of bacterial transport for the control condiEon of no-

flow, and when the magnitude of flow speeds and bacterial moElity speeds are of a similar order. 

The micromodels were made from polydimethylsiloxane (PDMS) and contained staggered pillar 

arrays of different grain diameters and pore lengths, resulEng in either low porosity (𝜙 = 0.42) or 

high porosity (𝜙 = 0.60) micromodels. The mean fluid speeds (𝑣<) determined from flow rate 

(Q), cross-secEonal area (A), and porosity (𝜙) as 𝑣< = _
Z`

, in the low porosity geometries were 

16.5 µ/s and 82.7 µm/s, and the mean fluid speeds in the high porosity geometries were 11.6 

µm/s and 57.9 µm/s, for the low and high flow rates, respecEvely. These correspond to fluid 

speeds in the range of 1 m/day to 7.15 m/day which are medium to high speed values typically 

observed in bioremediaEon applicaEons in alluvial aquifer sekngs [38, 39]. We found conducEng 
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experiments at lower flow rates (< 1µL/h) in our micromodels challenging due to pump limitaEons 

in establishing extremely low uniform rates and difficulEes encountered by emergence of small 

driS speeds even in absence of external flow gradients presumably due to imperfecEons in model 

fabricaEon, small pressure aberraEons at the inlet/outlet ports, small axial Elts, or potenEal 

presence of extracellular polymeric substance gradient [40]. Using pore throat length (given in 

secEon 2.2) as the characterisEc length, and using the values of dispersion coefficients presented 

later in secEon 3.1.2, the velociEes generated in the experiments would result in Peclet numbers 

approximately in the range of 0.25 to 16 – a range that allow us to make broad observaEons 

though they may be not fully generalizable. Experiments at no-flow condiEon in an open 

environment (i.e., without granular obstacles) were conducted with a subgroup of species in a 

previous work [41], which provides insights into the species-aware departure from Fickian 

diffusion in unconfined environments. ASer recording the videos from several replicates of 

experiments, we used TrackMate [42] to track, extract, and reconstruct thousands of trajectories 

(ranging in length from low tens of microns to several hundred microns) of individual cells (Fig. 1).  

To account for the small driS observed in no-flow experiments from one end of the 

micromodel to the other, we calculated the background flow (driS speed) by compuEng the rate 

of change in the locaEon of the centroid as 𝑣$ =
7
0
∑ $

$#
(𝑟.<)0

; , where 𝑟.<is the center of mass (x 

and y posiEons) of all bacteria in a frame at no-flow, and 𝑘 is the number of frames (in our case, 

𝑘 = 30). To include the greatest number of possible trajectories for this calculaEon, we reset the 

starEng point of all trajectories to 𝑡 = 0.  We calculated mean driS speeds for Acidovorax (0.29 

µm/s), Geobacter (1.41 µm/s) and Paenibacillus (0.59 µm/s) separately. These driS speeds are 

significantly small compared to the speeds produced in the low-flow and high-flow experiments 
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thus allowing us to treat the transport of bacteria in the two flow experiments as being solely 

driven by the interplay between moElity and hydrodynamics.  

 

 

Figure 1. Experimental setup used to analyze bacterial transport in microfluidic devices. (a) A sketch of the 
full micromodel from [41], which used the same basic micromodel schema3c as our experiments. The leP 
black dot represents the inlet and the right dot represents the outlet. The black sec3on represents an 
unobstructed part of the micromodel, and the gray sec3on represents the part of the micromodel with 
cylinders. (b) Depic3on of bacteria flowing (from leP to right) through a sec3on of the high porosity (𝜙 =
0.60) micromodel. The gray space represents the channels that fluid and bacteria travel through, and the 
black circles represent the cylinders (also referred to as “grains”). The scale bar represents 120 µm. Bacteria 
are not drawn to scale. (c) Bacterial trajectories for Acidovorax obtained in 5-minute interval over the course 
of the experiment in the high porosity micromodel at a flow rate of 1 µL/h. The colormap represents net 
speed of bacteria, with warm colors represen3ng high speeds and cool colors represen3ng low speeds. 
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Transport characterisEcs of bacteria were quanEfied using net speeds |𝑣2| =

a(/&23A/&)!J(b&23Ab&)!

∆#
, turn angles 𝛼# = 𝑡𝑎𝑛A7 hb&2!Ab&23

/&2!A/&23
i − 𝑡𝑎𝑛A7 hb&23Ab&

/&23A/&
i, mean square 

displacement 𝑀𝑆𝐷(𝑡) = 7
d
∑ |𝑟S(𝑡) − 𝑟S(0)|5d
Se7 , velocity autocorrelaEons 𝐶H(𝜏) = 〈|𝑣2|(𝑡 + 𝜏) ∙

𝑣(𝑡)〉, effecEve dispersion coefficients 𝐷6(𝑡) = 7
89 ∫ 𝐷6(𝑡, 𝑦:)𝑑𝑦:8

; , and bivariate angle-speed 

probability density contours. Here 𝑥# and 𝑦# are individual bacteria posiEons at Eme 𝑡, N is the 

total number of tracked cells, 𝑟S  is the displacement for bacterium 𝑖, and |𝑣2| is the magnitude of 

the net velocity (i.e., speed) of the bacteria. The scripts used to calculate all staEsEcs can be found 

in Supplementary Methods 2. Note that the net speeds are the speed of the bacteria determined 

through parEcle tracking. Since bacteria are displaced through the porous media both due to their 

own moElity and the advecEon imparted by the background flow, the net speed obtained via 

parEcle tracking measures the combined effect of these two drivers. 

2.3.2 Micromodel Construction 

 
Micromodels for three porous geometries were constructed from PDMS using staggered arrays of 

grains to represent porous media (see Fig. 1). The three geometries used in this experiment were 

(1) arrays with a grain diameter (GD) of 80 µm and a pore throat length (PL) - minimum space 

between grains - of 20 µm (𝜙 = 0.42), (2) arrays with a GD of 40 µm and a PL of 20 µm (𝜙 = 0.6), 

and (3) arrays with a GD of 40 µm and a PL of 10 µm (𝜙 = 0.42). The micromodel dimensions 

were 2 mm in the transverse direcEon, 17 mm in the longitudinal direcEon (for the porous 

secEon), and 20 µm in the verEcal direcEon. We chose a depth of 20 µm as we found that a larger 

depth causes bacteria to move in and out of the focal plane of our camera too oSen, and 

constraining the depth further would have caused excessive shear along the verEcal plane. 

 



 

 
80 

2.3.3 Bacteria Culture 

 
Bacterial strains Acidovorax JHL-9 and Paenibacillus 300A were grown in liquid culture aerobically 

at 30 °C on dextrose-free TrypEcase Soy Broth (TSB). At late-log to staEonary phase, cultures were 

diluted to an opEcal density at 600 nm (OD600) of ~ 0.1 – 0.15 and injected into the micromodel 

devices described above. Geobacter sulfurreducens was grown anaerobically (80:20 N2:CO2), in 

glass serum boZles or headspace vials, crimp-sealed with butyl-rubbers stoppers, on Freshwater 

Medium [43] with 50 mM sodium fumarate as electron acceptor in place of ferric citrate [44]. 

StaEonary-phase G. sulfurreducens cells were injected, without diluEon, into micromodel devices 

that had been de-oxygenated overnight in an H2-free anoxic chamber (MBraun, O2 < 10 ppm, 100% 

N2). De-oxygenated micromodels were then removed from the anoxic chamber using an anaerobic 

jar and were kept in the anaerobic jar unEl immediately before use. G. sulfurreducens cells were 

removed from the serum boZle or headspace vial with a degassed (80:20 N2:CO2) 1-cc syringe and 

22-gauge needle and immediately injected into the degassed micromodel.  Though our video 

acquisiEon was generally restricted to about an hour aSer the injecEon of bacteria, it should be 

noted that G. sulfurreducens are also known to tolerate and grow with oxygen as a terminal 

electron acceptor for up to 24 hours [45].  

2.3.4 Video Acquisition 

 
All videos were collected with a confocal imaging technique on a Nikon Eclipse Ti2-U inverted 

microscope equipped (viewing verEcally downwards and recording moEon in the x-y plane) with 

a digital CMOS camera Hamamatsu Orca-Flash 4.0 controlled by NIS Elements imaging soSware. 

The sensor pixel size was 6.5 µm x 6.5 µm, and each recorded frame had a size of 2048 pixels x 

2048 pixels. For videos at 10x magnificaEon, the recorded domain size was 2048 x 6.5/10 = 1331.2 

µm x 1331.2 µm, and for videos at 20x magnificaEon the video domain was 665.6 µm x 665.6 µm. 
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Videos were recorded for 5 minutes at frame rates of about 10 frames per second (the interval 

Eme between frames varied slightly resulEng in rates of 8-12 frames per second). The exact Eme 

interval between frames were recorded to allow for accurate computaEon of transport metrics.  

2.3.5 Image Preprocessing 

 
The raw videos were preprocessed with background subtracEon using a lag method specifically 

developed in-house for these experiments. To capture trajectories of bacteria that may have not 

moved between two successive frames, the subtracted background must be more than a few 

frames back in Eme. Standard pracEce in background subtracEon for such cases is to use the iniEal 

frame, or the mean frame, as a background for the rest of the video, but this was not possible in 

our case due to variability in image brightness throughout the duraEon of the video. To get around 

these problems, we used the 5th previous frame to perform background subtracEon. In other 

words, to subtract the background of frame 6, we calculated frame 6 minus frame 1. Thus, any 

bacteria that moved a liZle over the course of 5 frames could sEll be idenEfied in parEcle tracking.  

2.3.6 Particle Tracking 

 
ASer background subtracEon, the foreground was then loaded into ImageJ and parEcle tracking 

was performed with the plugin TrackMate. For feature detecEon the Laplacian of Gaussian (LoG) 

detector was used, and to link the features, we used the Linear Assignment Problem (LAP) tracker. 

A sample output of trajectories from TrackMate is given in the Supplementary Data.  

2.3.7 Flow Field Simulations 

 
SimulaEons of the flow field were conducted to understand which parts of the geometry bacteria 

are likely to oversample or undersample. The experimental geometry was iniEally digiEzed in 

Blender then refined in OpenFOAM to produce a regular grid consisEng of 2400 x 2400 x 72 voxels 
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with a resoluEon of Δ𝑥 = Δ𝑦 = 0.2773	µm, Δ𝑧 = 	0.2778	µm. The flow fields of the digiEzed 

geometries were obtained by solving the flow of incompressible Newtonian fluid governed by the 

Navier-Stokes equaEons using SimpleFoam. The steady-state solver belongs to the OpenFOAM 

package that uses semi-implicit methods for pressure linked equaEons algorithms.  Constant flow 

rate at specific experimental values of 1 and 5 µL/h (𝑄 = 2.78 × 10A7YmYsA7 or 𝑄 =

1.39 × 10A75mYsA7) and constant pressure 𝑃 = 0	kg mA7sA5 were imposed at the inlet and 

outlet of the domain, respecEvely. No-slip condiEons were assigned to the fluid-solid interface. 

We used a kinemaEc viscosity 𝜈 of 1.14x10-6 m2/s for the fluid (TSB), given a calculated raEo of 

f456
f0/&78

 of 1.14 [46]. A sample case folder for the simulaEons, as well as the commands used to run 

it on a local machine, can be found in Supplementary Methods 1. 

 

2.4 Results 

2.4.1 Advection-Dominated Transport Dynamics 

We use the term “advecEon-dominated transport” to highlight a regime wherein the variable 

shear forces within pore spaces, and dominance of flow speeds over moElity speeds, restrict the 

ability of bacteria to move across streamlines, thus guiding their moEon primarily along 

streamlines at differenEal velociEes. AdvecEon-dominated transport would occur in scenarios of 

high Peclet number [47] and persists in situaEons where weak coupling between moElity and 

biofilm formaEon paZerns are observed [48]. This type of transport, guided by shear induced cell 

rotaEon causing decreased transverse dispersion and increased lateral dispersion, has also been 

previously reported for bacteria in porous media flows [49].  Here, we provide addiEonal relevant 

staEsEcal informaEon to characterize advecEon-dominated transport for three different species 

of moEle bacteria relevant to bioremediaEon applicaEons. In the following, we characterize 
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transport dynamics through the (MSD), turn angle distribuEon, 𝐶H(τ), and 𝐷6(𝑡). We use these 

staEsEcs to develop a robust understanding of transport driven by differenEal advecEon, 

movement across streamlines, velocity decorrelaEon, and spreading [50, 51].  

2.4.1.1 Turn Angle Analysis Reveals Impact of Flow Rate on Mo=lity 

To understand the moElity of each species of bacteria, we primarily use their turn angle 

distribuEons. Note that turn angles as defined in this chapter are not the same as tradiEonally 

reported turn angles that reflect the body orientaEon during bacterial run and tumbles [52]. 

Because the bacterial speeds are not significantly greater than the background flow speeds, and 

because our experiments were performed at a relaEvely low frame rate, we use the term “turn 

angle” to capture the relaEve change in the trajectory of advected cells between successive video 

frames.  

For no-flow condiEons, Paenibacillus (peritrichous flagella-based moElity) show a high 

probability of low or very high turn angles (Fig 2a). Low turn angles (𝛼 > −30°	𝑜𝑟	𝛼 < 30°)  would 

represent persistent forward moEon (i.e., long run Emes), and high angle turns would represent 

reversals in direcEon (i.e., tumbling). Although not a necessary condiEon, a high probability of low 

turn angles implies a high probability of runs, and a high probability of medium to high turn angles 

implies a high probability of tumbling. Geobacter and Acidovorax (pili or monotrichous flagella-

based moElity) have a relaEvely low probability of both low and high turn angles because their 

moEon is generally more random and is subject to slight changes in hydrodynamics.  

To idenEfy the differences in moElity for each species more effecEvely, we also report the 

raEo of the turn angle PDF for each species to the turn angle PDF for Geobacter (Figs. 2d-2f). 

EssenEally, Geobacter represents our twitching baseline, as their speed distribuEons 

(Supplementary Figure 1) and mean speed (about 2.3 µm/s aSer subtracEng average driS) are 
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generally in agreement with previously reported twitching speeds of various bacteria [32, 35-37]. 

Thus, the PDFs of Acidovorax and Paenibacillus turn angles show departure of their moEon 

behavior from a typical twitcher. When flow is absent (Fig. 2d), the PDF raEo for Paenibacillus 

shows exactly what we expect from a swimmer – high probability of low turn angles (persistent 

forward moEon), low probability of medium turn angles (random moEon), and high probability of 

high turn angles (direcEon reversal). Intriguingly, the genome of Acidovorax JHL-9 (see data 

availability) contains numerous genes related to twitching moElity but not a complement of genes 

related to flagella-mediated moElity. However, as previously discussed, wet mount TEM images of 

strain JHL-9 (Supplementary Figure 2) suggest the presence of polar flagella. Furthermore, the 

speed (Supplementary Figure 1) and turn angle raEo (Fig. 2d) distribuEons at no-flow indicate that 

Acidovorax behaves differently than Geobacter and closer to Paenibacillus, thus revealing disEnct 

moElity traits to the three species selected in this study.  

Compared to the case of our no-flow experiments, the interpretaEon of our turn angle 

distribuEons in the presence of flow is slightly more complicated. We posit that in a viscous steady-

state flow, non-moEle bacteria would behave as inert parEcles transported by advecEon only, thus 

moving along streamlines of the pore-scale flow field, which would result in small turn angles 

between successive steps of the trajectories. In other words, in presence of a background flow, 

persistent forward moEon means a high probability of low turn angle distribuEons. However, 

moEle bacteria also move across streamlines, move in reverse direcEon, and explore the pore 

space under flow condiEons, and as a result, large turn angles should be expected for highly acEve 

self-propelled bacteria [25, 53-55].  

 

 



 

 
85 

 

Figure 2. Turn angle PDFs for all three species in the low porosity geometry (grain diameter = 80 µm, pore 
length = 20 µm). (a) Turn angle PDF at flow rate of 0 µL/h. (b) Turn angle PDF at flow rate of 1 µL/h. (c) Turn 
angle PDF at a flow rate of 5 µL/h . (d) Turn angle PDF ra3o at a flow rate of 0 µL/h. (e) Turn angle PDF ra3o 
at a flow rate of 1 µL/h.  (f) Turn angle PDF ra3o at a flow rate of 5 µL/h. Turn angle PDF ra3os are calculated 
as the PDF/PDFG, where PDFG represents the PDF of Geobacter. We choose to make the ra3os rela3ve to 
Geobacter as they move much less than the other bacteria. Convergence of the shape of the turn angle 
distribu3on and clustering of turn angles around 0° at 5 µL/h indicates strong advec3on-dominated 
transport.  
 

We find that Paenibacillus have a higher probability of large turns (𝛼 < −90°	𝑜𝑟	𝛼 > 90°) 

than the other two species at a flow rate of 1 µL/h, while at 5 µL/h this difference is even more 

noEceable (Figs. 2b and 2c). Examining the turn angle PDF raEos (Fig. 2e), we see that at 1µl/h 

Paenibacillus and Acidovorax have similar distribuEons for low to medium turn angles, but 

Paenibacillus has a much higher probability of large turn angles, indicaEng a greater potenEal for 

direcEon reversal than the other bacteria. At 5 µL/h (Fig. 2f) the similariEes between Paenibacillus 

and Acidovorax completely disappear, and the turn angle PDFs for Acidovorax and Geobacter 

essenEally converge. This implies that at high flow speeds, Paenibacillus, with its peritrichous 
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flagella, are either able to tumble more, or run faster, than Acidovorax or Geobacter. Furthermore, 

these results suggest that Acidovorax, with its monotrichous flagella, experience a greater impact 

on its moElity due to flow speed than Paenibacillus do. While more experiments with a greater 

variety of monotrichous and peritrichous species are needed to confirm this trend, our iniEal 

results imply that peritrichous flagella enable moElity at higher flow speeds than monotrichous 

flagella. Since the no-flow speed PDFs show that Acidovorax and Paenibacillus have similar max 

speeds, and monotrichous and amphitrichous bacteria have generally been shown to be capable 

of higher speeds than peritrichous bacteria [36, 58], it does not seem likely that the difference in 

moElity between Acidovorax and Paenibacillus at high speed is due to run speeds. Thus, our 

results also imply that at high flow rates Acidovorax are unable to tumble, but Paenibacillus can. 

This is supported by research showing that increasing numbers of flagella increases the probability 

of tumbling [59]. However, we should also note that differences in the flagellar architecture are 

not the only possible explanaEons for differences in the turn angle distribuEons. Two other 

possible explanaEons for this include reorientaEon strategies, which may impact their preference 

to run or tumble [60], and size-related dynamics, which have been shown to influence 

hydrodynamic impacts on bacterial moElity [61]. Regardless of the exact cause, our results do 

show that Paenibacillus can maintain swimming-like behavior at higher flow rates. Acidovorax, on 

the other hand, act like swimmers at low or no flow, and twitchers at high flow. In other words, 

advecEon-dominated transport, which causes trajectories of swimmers to appear similar as 

trajectories of twitchers, occurs at a lower flow rate for Acidovorax than for Paenibacillus. 

2.4.1.2 Effect on Bacterial Spreading at Different Porosi=es and Flow Rates 

Figure 3 confirms addiEonal evidence of advecEon-dominated transport via the computed MSD. 

Here, we introduce the term “differenEal advecEon” to describe the MSD results, stemming from 
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the bacteria's mixed super-diffusive moEons influenced by streamline shiSs, trapping, and pore 

space exploraEon. This term aptly captures the relaEonship between velocity decorrelaEon events 

and bacterial advecEon and offers a nuanced understanding of the transport dynamics. As the 

flow rate increases, bacteria will, on average, have a larger range of displacements due to the 

magnitudes of velociEes it can sample within the laminar profile of porous media flow [17]. 

Furthermore, smaller turn angles at higher flow rates (as described in the previous secEon) implies 

less streamline changing. This results in higher values of the MSD driven by increased differenEal 

advecEon as bacteria are transported by a range of velociEes produced by converging and 

diverging streamlines within the pore network. These observaEons are further used for later 

comparisons in the context of Fig. 6, and generally align with enhanced dispersion reported due 

to transport of bacteria along faster flow paths than the local flow [17, 25].  

ComplemenEng the increased differenEal advecEon, as the flow rate increases, the MSDs 

of all species of bacteria in the low porosity geometry show signs of convergence (both in slope 

and magnitude as seen in Fig. 3e), likely driven by decorrelaEon of cell swimming as bacteria 

navigates pore structures [56]. EssenEally, advecEon-dominated transport is thus revealed by the 

convergence (between different species of bacteria) of both turn angle distribuEons and MSD, and 

a shiS toward greater differenEal advecEon. In contrast, with the high porosity geometry, we 

observe less evidence of MSD convergence, which indicates that the flow speeds are not high 

enough to suppress bacterial moElity, leading to a reducEon in differenEal advecEon as shown by 

lower MSD values (Figs. 3b and 3c). We also find that for a fixed porosity and flow rate, Geobacter 

and Acidovorax always advect more than Paenibacillus, further supporEng the idea that 

peritrichous swimmers are differenEally advected to a lesser degree than twitchers or polar 

swimmers.  
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Figure 3. Mean square displacements (MSDs) at different porosi3es and flow rates for three different species 
of bacteria. (a) MSDs from relevant experiments (3 species at lower porosi3es and 1 at higher porosity, 2 
flow rates). The 1 µL/h results are shown as solid lines and the 5 µL/h results are shown as do`ed lines. (b) 
MSDs for Acidovorax for 𝜙 = 0.60 and 𝜙 = 0.42 at a flow rate of 1 µL/h (mean fluid speed of 11.6 µm/s 
and 16.5 µm/s respec3vely). (c) MSDs for Acidovorax for 𝜙 = 0.60 and 𝜙 = 0.42 at a flow rate of 5 µL/h 
(mean fluid speeds of 57.9 µm/s and 82.7 µm/s respec3vely). (d) MSDs for all species for 𝜙 = 0.42 at a flow 
rate of 1 µL/h. (e) MSDs for all species for 𝜙 = 0.42 at a flow rate of 5 µL/h. These figures show an increase 
in the impact of differen3al advec3on for mo3le bacteria as the flow rate increases. The rapid increase in 
MSD driven by differen3al advec3on, along with convergence of the MSDs in the low porosity geometry at 
5 µL/h, provide evidence of advec3on-dominated transport. At both flow speeds, Paenibacillus show lower 
values of MSD than Geobacter or Acidovorax, indica3ng a stronger resistance to advec3on-dominated 
transport. All low porosity results in this figure are from the grain diameter = 80 µm, pore length = 20 µm 
geometry. 
 

To further understand spreading in our experiments, we calculated the effecEve 

dispersion coefficient, 𝐷6, based on the average spaEal variance of the bacteria distribuEon 

evolving from a point-like injecEon, that is, the transport of Green funcEon as defined in [62, 63]. 

At 1 µL/h, 𝐷6 is impacted by spreading in both the longitudinal and transverse direcEons for 

Paenibacillus and Acidovorax, but primarily in the longitudinal direcEon for Geobacter owing to 

its considerably lower twitching speed than the mean fluid speed.  At 5 µL/h, 𝐷6 primarily 

represents longitudinal dispersion for all species. Our results show that when the flow rate 

increases from 1 µL/h to 5 µL/h, 𝐷6 increases the most for Geobacter, and the least for 
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Paenibacillus (Table 1). Because Paenibacillus are able to maintain some form of moElity at 5 µL/h, 

and as a result are sEll able to change streamlines and explore the pore space, differenEal 

advecEon has less of an impact on their dispersion than it does for the dispersion of Geobacter 

and Acidovorax. In other words, the bacteria that follow streamlines or explore less space in the 

transverse direcEon to the flow, advect and spread more in the direcEon of flow. These results 

complement those presented in [17, 25, 49], which showed that hydrodynamic gradients in porous 

geometries reduce transverse dispersion. We further this research by showing that bacterial 

transport is advecEve-dominated for a wide variety of flow rates depending on the type of 

bacterial moElity.  

 

Table 1. Effec3ve Bacterial Dispersion Coefficients 𝐷! (µ m2

s
) for all experiments conducted in the low 

porosity geometry (𝜙 = 0.42). As flow rate increases, Geobacter have the greatest increase in dispersion 
and Paenibacillus have the smallest increase in dispersion. As the mo3lity speeds of the bacteria are less 
than the fluid speed at 5 µL/h, dispersion is almost en3rely in the direc3on of flow for the 5 µL/h 
experiments. 

𝐷𝑒 

(µm
2

s
) 

Paenibacillus Geobacter Acidovorax 

1 mL/h 107 ± 46 308 ± 97 204 ± 56 

5 mL/h 217 ± 43 895 ± 148 466 ± 74 

 

2.4.1.3 Velocity Autocorrela=on to Examine Emergence of Advec=on-Dominated Transport 
 
We use the velocity autocorrelaEon funcEon (𝐶H) to further provide informaEon on advecEon-

dominated transport [64]. Generally, in porous media, bacteria show decorrelaEon in velociEes 

over Eme due to a tendency for sampling different porEons of the flow field and trapping events 

(i.e., pore confinement, occurrence of collisions and aZachment to obstacles) [8, 63]. Previous 

research has shown that decorrelaEon of bacterial trajectories is more rapid at high flow rates 
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[49]. Our findings both confirm these trends and present new informaEon on how moElity type 

impacts decorrelaEon. We show that Paenibacillus and Acidovorax exhibit decorrelaEon faster 

than Geobacter at 1 µL/h (Fig. 4a), but that at 5 µL/h, all decorrelaEon Emes are essenEally the 

same. This suggests that at low flow rates swimmers experience larger variaEons in velocity over 

Eme by sampling mulEple streamlines and trapping events that decorrelate subsequent velociEes. 

However, as flow rate increases, moElity type no longer has significant impact on decorrelaEon 

events. These observaEons further support the presence of flagella-based swimming for 

Acidovorax at 1 µL/h. Convergence of 𝐶H decorrelaEon Emes at high flow rate points to the 

emergence of advecEon-dominated transport. These trends generally agree with the observaEons 

of the MSD, 𝐷6 and turn angle distribuEon analysis, although 𝐶H is slightly less sensiEve to 

differences in moElity than the other metrics.  

 

 

Figure 4. Velocity Autocorrela3on func3ons (𝐶$) for the low porosity experiments at (a) 1 µL/h and (b) 5 
µL/h. At 1 µL/h, the swimming species (Paenibacillus and Acidovorax) show faster decorrela3on 3me 
(approximately 6.7 seconds) than the 10.8 second decorrela3on 3me of the twitching species (Geobacter). 
At 5 µL/h the 𝐶$ for the plots of all species converges producing a decorrela3on 3me of approximately 0.8 
seconds, which is further evidence of advec3on-dominated transport. 
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2.4.2 Spatial Variations in Net Speeds 
 

We digiEzed the experimental microfluidic geometries and simulated the steady-state viscous flow 

at high resoluEon using SimpleFoam [65, 66] to determine how bacteria may under or oversample 

different parts of a flow field (Fig. 5). By comparing the obtained simulated distribuEon of fluid 

speeds against the experimentally derived distribuEon of net bacterial speeds, we can develop an 

understanding of the zones within a pore network that bacteria may preferenEally occupy. We 

recognize that a more accurate comparison would use flux weighEng and parEcle tracking to 

compare the simulated fluid speed PDFs with the net bacterial speed PDFs. However, given the 

large number of trajectories (tens of thousands for each bacteria), and the periodic nature of our 

flow field, we posit that the trajectories of tracked bacteria adequately sample the domain space 

and thus provide basis for comparison to simulated speeds. 

We observe that regardless of flow rate, moElity type, or porosity, moEle bacteria in 

porous media tend to undersample low-speed zones and oversample medium-speed zones 

(relaEve to the Eulerian fluid speed PDF) (Fig. 6). This provides addiEonal insight challenging the 

noEon of shear trapping which suggests bacteria in a shear flow will oversample low-speed zones 

[67, 68]. A plausible explanaEon for this observed difference lies in recognizing that studies 

reporEng shear trapping were oSen conducted in simpler geometries (e.g., straight channels) [14] 

than in porous media geometries producing converging and diverging streamlines, although it has 

been reported that shear may lead to creaEon of hotspot of colonizaEon instead of trapping close 

to walls of curved surfaces [18]. . An exact relaEonship between hydrodynamics and the observed 

speed sampling cannot be deduced in our study because of lack of high-resoluEon tracking 
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Figure 5. Results from the steady-state viscous flow simula3ons of our experimental microfluidic 
geometries. All low porosity results in this figure are from the grain diameter = 80 µm, pore length = 20 µm 
geometry. (a) Probability distribu3on func3ons (PDFs) of fluid speed from the simulated flow fields for each 
porosity and flow rate used in our experiments. (b) Zoomed-in velocity magnitude field for the low porosity 
simula3on at 1 µL/h. (c) Zoomed-in velocity magnitude field for the high porosity simula3on at 1 µL/h. (d) 
Zoomed-in shear stress magnitude field for the low porosity simula3on at 1 µL/h. (e) Zoomed-in shear stress 
magnitude field for the high porosity simula3on at 1 µL/h.  
 

necessary to compute shear-induced lateral transport towards the walls due to Jeffrey orbits [69-

71] and potenEal backward swimming in the leeward side of the grains, which has been reported 

has another form of shear trapping in more complex geometries [18].  

In no-flow condiEons (Supplementary Fig 1), aSer subtracEng driS speeds, Geobacter has 

a mean speed of 2.3 µm/s, Acidovorax has a mean speed of 5.9 µm/s, and Paenibacillus has a 

mean speed of 7.2 µm/s. The 95th percenEle speed for the three species are 4.5 µm/s, 17.9 µm/s, 

and 20.6 µm/s for Geobacter, Acidovorax, and Paenibacillus respecEvely. At the low flow rate of 1 

mL/h (16.5 µm/s average flow speed at low porosity), the swimming speeds of Acidovorax and 

Paenibacillus can thus exceed the fluid flow speeds (although just barely in the case of 
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Acidovorax), but at 5 mL/h, none of the bacteria in our study can consistently exceed the fluid flow 

speed. Thus, advecEon-dominated transport in its simplest form is a result of flow speeds 

 

 

Figure 6. PDFs of speeds plo`ed to show the net speeds of the bacteria overlayed by the simulated speeds 
for the respec3ve flow rate and porosity. The net speeds are represented by sca`er points, whereas the 
simulated speeds are represented by solid lines. All low porosity results in this figure are from the grain 
diameter = 80 µm, pore length = 20 µm geometry. All simulated PDFs represent the distribu3on of Eulerian 
flow speeds for that geometry. (a) Net and simulated speed distribu3ons for Acidovorax for 𝜙 = 0.60 and 
𝜙 = 0.42 at a flow rate of 1 µL/h. (b) Net and simulated speed distribu3ons for Acidovorax for 𝜙 = 0.60 
and 𝜙 = 0.42 and flow rate of 5 µL/h. (c) Net and simulated speeds for all species for 𝜙 = 0.42 at a flow 
rate of 1 µL/h. (d) Net and simulated speeds for all species for 𝜙 = 0.42 at a flow rate of 5 µL/h. These 
figures show the tendency for mo3le bacteria to oversample medium-speed zones within a porous media.  
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exceeding moElity speeds. However, shear adds another layer of complexity when considering the 

ability for bacteria to bundle/unbundle their flagella. Recent work has shown that at a shear 

magnitude of about 0.26 Pa, E. Coli lose control over this mechanism and can’t effecEvely swim 

[72]. The 1 µL/h simulaEons in our study do not produce shear exceeding this value (Figs. 5d and 

5e), but at 5 µL/h, the value of shear close to the grain is larger than this threshold value. Although 

an invesEgaEon of threshold shear magnitudes for bundling abiliEes in Paenibacillus and 

Acidovorax was beyond the scope of this chapter, the inability to control moElity [73] through 

bundling/unbundling of flagella remains a likely explanaEon for the differences observed in the 

transport of Paenibacillus and Acidovorax. It should be noted that in our quasi-2D porous media, 

under uniform and laminar flow, there are no chemotacEc or thermal gradients influencing the 

transport. Thus, the magnitude and distribuEon of shear within a porous media, which aZains its 

maximum value at grain surfaces and is minimum along centerlines of a pore channel, is likely the 

primary physical mechanism that controls bacterial transport.  

 

2.4.3 Combined Effect of Turn Angle and Net Speed on Spreading 
 

We further analyze the combined influence of net speed and turn angle on the advecEve 

spreading of moEle bacteria using a matrix of bivariate (speed-angle) joint probability density 

contours (Fig. 7). The probability density matrix allows us to observe general relaEonships 

between the differenEal advecEon driven spreading ploZed in Fig. 3a, and the turn angles and net 

speeds of the bacteria. As net speed increases, bacteria have a narrower range of turn angles and, 

therefore, greater spreading in the longitudinal direcEon stems from strongly advecEve parEcle 

moEon. In the top and middle rows of Fig. 7, larger turn angles and less spreading are seen from 
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leS to right. In the boZom row, there is no significant change in large-angle turns or advecEve 

spreading. Thus, somewhere between the middle and boZom rows, or around a median speed of 

50-100 mm/s, the impacts of advecEon-dominated transport increase to the extent that changes 

in fluid speed causes insignificant difference in advecEve spreading or turn angle for bacteria of 

the same moElity type. This suppression in acEve dispersion in the case of strong fluid flow 

corroborates recent studies of transport of acEvely moving parEcles in porous media [74]. In 

addiEon to providing deeper insight into the transiEon to the advecEon-dominated regime, the 

joint probability density matrix also shows that bacteria are more likely to make large turns at low 

speeds than at high speeds. Conversely, small-angle turns are more likely to occur at high speeds 

than large-angle turns. When bacteria are moving with faster streamlines, their turn angles are 

smaller as they are more likely to go with the flow. When moving with slower streamlines, bacteria 

are more likely and more able to make large turns and cross transversely to other streamlines. This 

provides further evidence that pore space exploraEon and movement across streamlines require 

low fluid speeds and results in large turn angles. 

 

2.5. Discussion  
 

This study focuses on invesEgaEng the impact of flow rates and porosity on the transport of 

different species of moEle bacteria in porous media. We show that Geobacter, with their purely 

twitching-based moElity, understandably need surfaces to propel themselves forward and are 

unable to swim in suspended media, and as a result are not fast enough in a porous media domain 

to show any impacts of moElity on their transport at low or high flow rates. Paenibacillus, with 

their peritrichous flagella, exhibit strong swimming moElity. Although they exhibit weak moEon  
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Figure 7. Velocity-angle joint probability density matrix. (a) Acidovorax, 𝜙 = 0.42, 1 µL/h (grain diameter = 
80 mm, pore length = 20 µm) (b) Paenibacillus,  𝜙 = 0.42, 1 µL/h (c) Acidovorax, 𝜙 = 0.60, 1 µL/h (d) 
Paenibacillus, 𝜙 = 0.42, 5 µL/h I Geobacter, 𝜙 = 0.42, 1 µL/h (f) Acidovorax, 𝜙 = 0.60, 5 µL/h (g) 
Geobacter, 𝜙 = 0.42, 5 µL/h (h) Acidovorax, 𝜙 = 0.42, 5 µL/h (grain diameter = 80 mm, pore length = 20 
mm) (i) Acidovorax, 𝜙 = 0.42, 5 µL/h (grain diameter = 40 µm, pore length = 10 µm). Each figure in the 
density matrix shows probability density contours for net speed and turn angle for a par3cular set of 
condi3ons. As we move across the matrix from bo`om to top, we see decreased net speeds, increased 
large-angle turns, and less spreading. As we move from leP to right across the matrix, we see a slight 
increase in large-angle turns and decrease in spreading, but not as much as going from bo`om to top. There 
is no significant change in net speed moving from leP to right. This figure implies that fast net speeds are 
required for bacteria to be in the advec3on-dominated regime, which results in more small-angle turns. 
Furthermore, past a threshold speed of about 50-100 µm/s, mo3le bacteria are unlikely to have large-angle 
turns.  
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across streamlines and exploraEon of pore space at high flow rates, their turn angle distribuEons 

reflect a higher degree of acEvity. In the middle of the twitchers and swimmers are Acidovorax. 

Their transport metric are closer to swimmers at no-flow and at a flow rate of 1 µL/h, but at 5 

µL/h, their transport metrics tend to appear closer to twitchers. Although a deep invesEgaEon of 

the moElity type of Acidovorax is beyond the scope of this work, we show that differences in 

flagellar architecture offer a reasonable explanaEon for their behavior. Our results and previous 

imaging of Acidovorax suggest that they have a single polar flagellum as opposed to the 

peritrichous flagella of Paenibacillus. At high flow rates, it appears that peritrichous flagella are 

more able to facilitate tumbling behavior, and thus, movement across streamlines.  

In the advecEon-dominated transport regime, lack of pore space exploraEon and 

streamline changing results in less transverse movement and thus leads to an overall increase in 

transported distance and spread in the direcEon of flow. We show that advecEon-dominated 

transport is revealed through convergence of turn angle distribuEons, MSDs, species independent 

velocity decorrelaEon Emes, and a clustering of turn angles around 0°. This study also provides 

contrasEng results to the noEon of shear trapping wherein moEle bacteria are expected to 

oversample low-velocity regions in a shear flow. In the case of our complex porous geometry, we 

observe bacteria oversampling medium-speed regions. When the geometry of pore channels 

allows for convergence and divergence of streamlines in 2D space, producing hydrodynamic 

paZerns typically found in realisEc porous media, wide-ranging values of shear forces emerge, 

leading to an interesEng interplay between shear, moElity, and the overall bacterial transport.  

Oversampling of medium-speed zones could be because of high levels of shear (closer to the walls) 

prevenEng bacteria from bundling their flagella [72]. In this unbundled state, the bacteria act as 

deformable objects resulEng in a stokes liS force as they approach surfaces. In addiEon, size 
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exclusion and hydrodynamic chromatography have shown that the transport of microbes is 

dependent on size and shape [75, 76]. Size exclusion occurs because bacteria are too large to only 

occupy the slow speed zones around the grain [77]. Unless they are aZached, bacteria will move 

more quickly around the grain than a solute will because part of their body is in higher speed 

zones. Finally, electrostaEc repulsion, or the likely presence of energy barriers close to the grains, 

may prevent bacteria from gekng too close to surfaces [18, 55, 78-81]. The wide variety of 

plausible explanaEons for absence of shear trapping in our study, or shear trapping being 

manifested at through bacterial reorientaEon in the leeward side of the grains, illustrate the 

complexiEes of analyzing bacterial transport in porous media. The oversampling of medium 

speeds can thus be a result of several different hydrodynamic or biophysical properEes, and we 

idenEfy shear as a likely physical phenomenon underpinning our observed transport paZerns. 

Our work complements previous studies that have shown advecEon to dominate the 

transport of bacteria at high flow rates [17, 25], effecEvely erasing the differences in moEle 

behavior between different species of bacteria [14, 18, 67, 78, 82]. Our work also builds upon the 

body of evidence showing that there are significant transport differences between swimmers and 

twitchers [83, 84], and that bacteria with straighter paths (non-moEle) spread more (in the 

direcEon of flow) than bacteria with exploratory paths (moEle) at low flow speeds [17, 25]. We 

expect the results presented here to help future researchers in developing more robust 

experiments and models for not only bioremediaEon, but other applicaEons where species-aware 

transport dynamics at small-scale can support and inform development of improved upscaled 

models. As evidenced by plots of various transport metrics which tend to move towards 

convergence at high flow rates, it can be argued at sufficiently high flow rates in porous media, 

different bacterial species will all exhibit uniform transport characterisEcs not too dissimilar than 
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those expected from passive tracers. The usefulness of the presented research is in recognizing 

that such high flow rates are rarely encountered in porous media applicaEons, and the progression 

of bacterial species towards a uniform transport behavior depends on the flow rates, porosiEes, 

and the moElity types. 

Although it was beyond the scope of this work to rigorously invesEgate how our results 

may be applied to general micro-scale and pore-scale modeling of microbial moElity, we offer a 

quick example here of how they may be simply applied to Darcy-scale bacterial transport. As 

discussed in secEon 1.1.1.2.3 of the dissertaEon, The 1D ADE for microbial transport in a 

saturated, homogeneous porous medium can be formulated in simple terms as [46] 𝑅 !-
!#
+

1#
X
!?
!#
= 𝐷 !!-

!/!
− 𝑣 !-

!/
, where S is the aZached microbe concentraEon, D is the hydrodynamic 

dispersion coefficient, v is microbial velocity, R is the retardaEon factor, 𝜌3 is the bulk density, and 

𝜀 is the bed porosity. Given this equaEon, a simple way to incorporate our results would to have 

𝐷 be a funcEon of 𝑣` (pore water velocity) and moElity type. Very roughly, our results imply that 

𝐷 doubles when 𝑣 increases by a factor of five, and 𝐷 is 2x greater for bacteria with twitching 

moElity than for those with monotrichous flagella, and the 𝐷 for bacteria with monotrichous 

flagella is 2x greater than for those with peritrichous flagella. However, given our lack of variety in 

species, our use of only two flow rates, and our incomplete understanding of the moElity type of 

Acidovorax, more robust studies are needed to confirm the present trends before significant 

alteraEons to transport equaEons are warranted. Furthermore, a more rigorous mathemaEcal 

understanding of the upscaling of these bacterial dispersion coefficients from micro-scale to 

Darcy-scale is needed to effecEvely use them in bioremediaEon and other field-scale efforts. 

While we have tried to provide a robust analysis of bacterial transport in idealized porous 

media under different flow rates, we also recognize that our study contains many limitaEons. The 
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bacteria were difficult to image and required large exposure Emes, which resulted in low frame 

rates and significant light scaZering around the grains, thus impacEng the accuracy of parEcle 

tracking. The low frame rates were parEcularly challenging for situaEons with high-speed parEcles 

(such as Geobacter at 5 µL/h), which highlights the need for tracking methods that can more 

accurately extract moEon staEsEcs from high speed parEcles. Furthermore, the low frame rate 

prevented us from analyzing bacteria through tradiEonal run and tumble staEsEcs. We also 

recognize that a more expansive set of experiments would have included a wider variety of flow 

rates  (especially lower flow rates so that moElity driven diffusion is more dominant than flow 

driven advecEon), which would allow for more confidence in any trends observed. Also, although 

we have mainly aZributed the differences in transport of our three species to their differences in 

moElity, there are other phenomena, such as the impact of hydrodynamics on different cell 

lengths (i.e., size exclusion), and DLVO and steric interacEons [7], which could offer supporEng 

explanaEons. Finally, we recognize that a more complete study of the impacts of flow rate on the 

transport of different bacteria would examine the impact of shear on the ability for monotrichous 

and peritrichous flagella to bundle/unbundle. These limitaEons show that there is sEll significant 

work to be done to develop a mature theory of bacterial transport in porous media flows. 
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Chapter 3: Evaluation of particle tracking codes for dispersing particles in 
porous media 

 

3.1 Abstract 

ParEcle tracking (PT) is a popular technique in microscopy, microfluidics and colloidal transport 

studies, where image analysis is used to reconstruct trajectories from bright spots in a video. The 

performance of many PT algorithms has been rigorously tested for directed and Brownian moEon 

in open media. However, PT is frequently used to track parEcles in porous media where complex 

geometries and viscous flows generate parEcles with high velocity variability over Eme. Here, we 

present an evaluaEon of four PT algorithms for a simulated dispersion of parEcles in porous media 

across a range of parEcle speeds and densiEes. Of special note, we introduce a new velocity-based 

PT linking algorithm (V-TrackMat) that achieves high accuracy relaEve to the other PT algorithms. 

Our findings underscore that tradiEonal staEsEcs, which revolve around detecEon and linking 

proficiency, fall short in providing a holisEc comparison of PT codes because they tend to 

underpenalize aggressive linking techniques. We further elucidate that all codes analyzed show a 

decrease in performance due to high speeds, parEcle densiEes, and trajectory noise. However, 

linking algorithms designed to harness velocity data show superior performance, especially in the 

case of high-speed advecEve moEon. Lastly, we emphasize how PT error can influence transport 

analysis. 

 

3.2 Introduction 

ParEcle Tracking (PT) employs detecEon and linking algorithms to reconstruct the 

trajectories of objects within Eme-lapse image data. PT has vast applicability, spanning across any 

video data with moving enEEes, and it is one of the principal methods used to decipher microscale 
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transport processes. This includes phenomena such as parEcle diffusion [1–3], nano and micro 

parEcle transport in saturated [4, 5] or mulEphases flow [6], bacterial dispersion [7–17] , 

chemotaxis [18], biofilm formaEon [19, 20], viral transport [12], transport in porous media [8–11, 

21], colloid filtraEon [22], and computaEon of DLVO interacEons through accurate trajectory 

analysis and measurements of hindered diffusion [23, 24]. For a granular understanding of these 

processes, the precision and speed of PT are paramount. 

The PT landscape boasts a plethora of open source and proprietary codes [25]. This 

mulEtude underscores the pressing need for robust comparaEve analyses between codes. 

Notably, the seminal comparaEve study in this domain centered on parEcles exhibiEng Brownian 

and directed moEon within open media [26]. However, a void persists in the exploraEon of PT 

methods tailored for parEcles navigaEng porous media flows. In these flows, spaEal confinement 

(i.e. obstacles or grains) and dispersion result in complex flow paths, leading to pronounced 

variability in velocity fields over small temporal and spaEal scales [27]. We should note here that 

parEcle tracking, in the context used throughout this chapter, refers to Eme lapse image 

acquisiEon and subsequent parEcle idenEty assignment between consecuEve frames [28]. 

The common strategy to reconstruct single parEcle trajectories by Eme lapse image 

acquisiEon first requires the parEcle detecEon in a single image at each frame and, then, the 

parEcle idenEty assignment (also termed as pairing or linking assignment) between parEcles 

detected in two consequent frames. Thus, key challenges in PT revolve around detecEon, 

localizaEon, and linking errors [26, 29]. DetecEon errors oSen stem from overlapping parEcles, 

parEcles out of focus, parEcles indisEnguishable from the background, or varied parEcle sizes [30, 

31]. Linking errors can similarly be aZributed to a confluence of factors: high parEcle speeds and 

densiEes, algorithmic inaccuracies, and preexisEng detecEon errors [32]. LocalizaEon error 
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predominantly emerges from the detecEon algorithm and the signal-to-noise raEo of the imagery 

[26]. Linking errors generally represent the most significant source of error, although large errors 

can occur for images where detecEon is especially difficult. LocalizaEon errors, which are oSen 

sub-pixel, minimally influence PT performance for a large group of parEcles. 

Here, we compare the performance of four PT linking algorithms for a simulated 

dispersing of parEcles in porous media. To understand the impacts across a range of parEcle speed 

distribuEons, we simulated tracer parEcle dispersion in two different porous geometries (further 

discussed in Methods secEon). A criEcal facet of parEcle tracking is the parEcle spacing 

displacement raEo [33], 𝑃𝑆𝐷𝑅 = Sg$
D∆#

 , where ipd is the average inter-parEcle distance detected 

within each frame (averaged over all frames), U is the average parEcle speed, and ∆𝑡 is the Eme 

interval between two consequent frames that corresponds to the inverse of the frame rate. Hence, 

PSDR is a measure of the mean parEcle spacing relaEve to the average jump length of parEcles 

between frames. This staEsEc can be considered a general constraint on the strength of PT 

algorithms, as it is directly related to the number of probable links each parEcle can make with 

other parEcles. For 𝑃𝑆𝐷𝑅 << 1, PT has been shown to be extremely challenging [34], and high 

parEcle densiEes have been show to increase the sensiEvity of PT parameters [35]. In fact, one of 

the primary moEvaEons of this chapter is to develop a rigorous understanding of parEcle tracking 

in these challenging scenarios, given that we observed jumps of up to 120 pixels per frame in our 

videos of Geobacter. As parEcles get very close together or have large displacements between 

frames, PT algorithms are not able to confidently determine accurate links to respecEve 

trajectories between frames. Thus, our analysis covers mulEple mean speeds, parEcle densiEes, 

and speed distribuEon shapes to gauge PT codes across varied PSDRs (Table 1). Our approach not 

only evaluates PT codes for porous media, but also refines the standard PT comparison 
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benchmark. We show that "classical staEsEcs," which exclusively focus on parEcle localizaEon, 

detecEon, and linking, might not penalize aggressive linking adequately. Specifically, classical 

staEsEcs aren’t effecEve for understanding the error associated with PT algorithms that "force" 

links between trajectories under improbable circumstances. To provide a more accurate 

comparison between PT methods, we use a suite of experimental staEsEcs that offer significant 

depth in understanding of PT results compared to classical staEsEcs. Moreover, we shed light on 

the potenEal for PT error to skew transport analyses of tracer parEcles in porous media. 

Concomitantly, we unveil a novel PT code (V-TrackMat), tailored for microfluidics 

experiments, craSed by the collaboraEve efforts of some of the coauthors. The other three 

algorithms we tested for this chapter (Trackpy, TrackMate-LAP, and TrackMate- Kalman) are 

described in further detail in the methods secEon. Our findings highlight V-TrackMat’s ability to 

strike a balance between accuracy and judicious tracking at the expense of speed. Through this 

exploraEon, we endeavor to amplify the discourse in PT – emphasizing the shortcomings of 

tradiEonal metrics, unveiling the intricacies of various PT algorithms, illuminaEng the impacts of 

PT error on transport analysis, and introducing a robust PT method. 

The work presented in the chapter is an enhanced version of the published arEcle: 

“Berghouse, M., Miele, F., Perez, L.J., Bordoloi, A., Morales, V.L., & Parashar, P. EvaluaEon of 

parEcle tracking codes for dispersing parEcles in porous media. Sci Rep 14, 24094 (2024). 

hZps://doi.org/10.1038/s41598-024-75581-0”. This chapter builds on the work presented in the 

published paper by establishing the moEvaEon through reflecEons on chapter 2, discussing the 

generaEon of pathlines in greater detail, discussing how the limitaEons of parEcle tracking may 

have impacted the results of chapter 2, and presenEng a rudimentary comparison of different PT 

methods for experimental data. 

https://doi.org/10.1038/s41598-024-75581-0
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Table 1. PSDR values for all simula3ons in this chapter. 

Bimodal Sp = 0.9 Sp = 2.6 Sp = 9.9 Sp = 19.6 
ρp ≈ 1.25e−4 42.8 15.5 4.6 2.5 
ρp ≈ 2.50e−4 24.5 10.4 3.0 1.7 
ρp ≈ 5.00e−4 14.9 6.6 2.3 1.1 

Unimodal Sp = 0.8 Sp = 1.8 Sp = 6.7 Sp = 11.3 
ρp ≈ 1.25e−4 34.3 17.4 5.3 3.1 
ρp ≈ 2.50e−4 22.8 12.6 4.0 2.4 
ρp ≈ 5.00e−4 15.8 8.9 2.6 1.6 

 

3.3 Methods 

3.3.1 Simulations 

PT codes have been extensively compared for Brownian moEon and constant-velocity moEon in 

open media [26]. However, both 3D natural [36] and 2D engineered porous materials [37] are 

characterized by complex pore structures that result in broadly distributed velocity fields which 

are known to challenge tracking algorithms, so we chose to simulate dispersing parEcles in porous 

media for our comparison. We used simulaEons to create our ground truth imagery and 

trajectories, because although the gold standard for PT comparison is experimental data, there 

are no manually-labeled videos of dispersing parEcles in porous media that can be used as the 

ground truth. 

For each of the 2D geometries (described in the paragraph below), we used OpenFOAM 

[38] to solve the flow fields, then calculated the pathlines via the Matlab funcEon 

"interpstreamspeed" (Fig. 1a). The “interpstreamspeed” funcEon in MATLAB refines streamline 

verEces by interpolaEng them based on the speed of a vector field, accommodaEng both two-

dimensional (2D) and three-dimensional (3D) datasets. Given spaEal coordinates (𝑋, 𝑌, 𝑍) on a 
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regular grid, velocity components (𝑈, 𝑉,𝑊), and an iniEal set of streamline verEces 𝑉S , the 

funcEon calculates or accepts a speed field S, defined as S = √𝑈5 + 𝑉5 to guide vertex density. 

 

Figure 1. This figure shows the general workflow for the construc3on of simulated trajectories. (a) Pathlines 
for the bimodal simula3on at PSDR = 1.1 colored by normalized speed. (b) Simulated imagery analyzed by 
various par3cle tracking methods. (c) Zoomed in sec3on of simulated par3cles showing overlapping 
par3cles. Most issues with detec3on occur due to this overlapping, which results in false nega3ves. (d) 
Par3cle at full resolu3on (10000x10000) during simula3on crea3on. (e) Par3cle at final resolu3on 
(2000x2000) aPer interpola3on. 
 

The speed at each vertex is interpolated using MATLAB’s “interp3” (for 3D) or “interp2” 

(for 2D) funcEons, yielding speed values 𝑆S  at each streamline posiEon, which are scaled by a user-

defined factor SF to control vertex spacing. The funcEon then resamples vertex posiEons by 

compuEng cumulaEve distances 𝑑S = ∑ �𝑉h − 𝑉hA7�S
he7  along the streamline and placing new 

verEces 𝑃0 at fracEonal posiEons based on interpolated speeds, such that 𝑑0 = 𝑆S ∙ 𝑆𝐹 governs 

the spaEal resoluEon. The resulEng output is a refined streamline that adapts to local velocity 

variaEons, producing denser sampling in regions of slower flow and sparser sampling in regions of 

faster flow. The obtained flow fields exhibited large variaEons in speed distribuEons, resulEng in 

simulaEons that we termed as "bimodal" and "unimodal". The pathlines were seeded with 

c.

b.

d.

e.

a.
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relaEvely equally spaced parEcles throughout the whole domain (with minor fluctuaEons due to 

grain posiEons), and their moEon along the pathlines over Eme resulted in the final ground truth 

imagery and trajectories (Fig. 1b). A small amount of random movement (Gaussian distribuEon 

with µ = 0 and σ = 0.5 pixels) was added on top of the ground truth advecEve trajectories. This 

amount of random moEon can be considered a reasonable representaEon of diffusion in 

advecEon-dominated condiEons (𝑃𝑒 ≈ 500). Given a characterisEc length of about 61.5 pixels 

(roughly equal to the average pore throat length), and a mean parEcle speed of between 2.6 and 

10.2 px/frame, we can calculate 𝐷 = [5.k,7;.5]∗k.7B
B;;

 , which gives us a D in the range of [0.32, 1.25] 

px2/frame. Because we wanted to primarily focus on the linking abiliEes of different PT algorithms, 

we removed the background (cylinders of the geometry). However, due to overlapping parEcles 

in our simulaEons (Fig. 1c), we weren’t able to completely remove the influence of detecEon 

accuracy. The parEcles with a diameter of 8 pixels (for a 2000x2000 pixel domain) were defined 

with a 2x2 black dot in the center with slightly increasing brightness for the surrounding pixels 

(Figs. 1d and 1e). 

Our bimodal simulaEons were derived from experimental digital microscopy imagery of a 

quasi-2D porous media microfluidic device. The geometry of the microfluidic device, and thus our 

bimodal simulaEons, consists of a staggered array of equally sized and spaced grains (Figs. 1a and 

2c), also referred to as a microfluidic lakce [8]. The unimodal simulaEon was derived from a 

geometry with similar average porosity, but with random placement and sizing of grains and pore 

throats (Fig. 2d). We term the first group of simulaEons as "bimodal" (Fig. 2a), because there are 

two clear peaks in the speed distribuEons for 𝑆Go<������ ≥ 2.6. We term the other group of simulaEons 

as "unimodal" (Fig. 2b), because there is only one clear peak at all mean speeds. 
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In addiEon to examining the impact of parEcle speed distribuEon on PT performance, we 

also vary the number of parEcles in our simulaEons. We use the iniEal number of parEcles at the 

beginning of each simulaEon to calculate the parEcle density (parEcles/pixels2). ParEcle densiEes 

decrease over Eme as individual parEcle trajectories disappear or exit the simulaEon bounds. 

 

Figure 2. This figure shows the par3cle speed distribu3ons for the bimodal (a) and unimodal (b) simula3ons, 
and the simulated pathlines for a bimodal (c) and unimodal (d) simula3on for PSDR = 2.3 and PSDR = 2.6 
respec3vely. The speed distribu3ons in (a) are normalized by the mean speed of the lowest-PSDR bimodal 
simula3on (19.6 pixels/frame). The speed distribu3ons in (b) are normalized by the mean speed of the 
lowest-PSDR unimodal simula3on (11.3 pixels/frame). The simulated pathlines and variety of speed 
distribu3ons illustrate the large range of condi3ons our PT codes were tested in. 
 

a. b.

c. d.
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The primary goal of this chapter is to provide a rigorous comparison of different linking 

algorithms for simulaEons of dispersing parEcles in varying geometry and at different parEcle 

density and speed. Although this does not cover the full range of variability expected in videos of 

dispersing parEcles, we chose to focus on PSDR and geometry because they highlight differences 

in the linking capabiliEes of each PT code. However, performance of PT codes can also be impacted 

because of limitaEons of methods and devices to capture and process videos of dispersing 

parEcles. These limitaEons could potenEally inject random fluctuaEons and intermiZency 

(blinking) in parEcle posiEons. Thus, we also provide an analysis of simulaEons where we increase 

the magnitude of the random displacement on top of our purely dispersing parEcles, and 

randomly set 2% of parEcles to be invisible for each frame. Specifically, we enhance the random 

moEon by using σ = 2 pixels (instead of 0.5) in the method to represent normally distributed weak 

diffusion as described above. The displacements were restricted to be less than 6 pixels (three 

standard deviaEon). This random moEon accounts for the combined effects of diffusion, camera 

jiZer, and oscillaEons in parEcle brightness. The intermiZency generally accounts for parEcles 

moving in and out of the focal plane of the camera, which can be caused by a variety of 

phenomena such as diffusion, parEcle-parEcle interacEons, parEcle-wall interacEons, and camera 

exposure Eme. The magnitude of the intermiZency (2%) was calculated through an analysis of 

microfluidic experiments of colloids (detailed methods provided in Supplementary Methods). 

Both of these addiEons can be thought of as increasing the noise of the trajectories, so in this 

chapter we refer to these experiments as the "noisy simulaEons". All other simulaEons in the 

chapter, as described above, contain a minimal amount of noise to ensure tracking capabiliEes. 

We thus refer to the main simulaEons as the "minimal-noise" simulaEons when comparing their 

results with those of the noisy simulaEons. 
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3.3.2 Particle Tracking 
 

In order to focus on the depth of our PT comparisons, we chose to analyze four PT 

algorithms. For this study, we compared the outputs of TrackMate [39,40], Trackpy [41], and a new 

PT method developed by our co-authors named "V-TrackMat". We chose TrackMate (TM) and 

Trackpy (TP) due to their high popularity in bio-image analysis, and because they use different 

linking algorithms. Each algorithm tested in this dissertaEon chapter uses a nearest-neighbors-

based method to link parEcles. To try and expand the variety of invesEgated algorithms, we also 

tested two deep learning (DL) methods [42, 43], but found that they either couldn’t be run on our 

hardware (more than 8 GB VRAM or too slow for CPU-based models) or did not perform as well 

as TM, TP, and V-TrackMat. Likely, the high resoluEon of our images (2000x2000 pixels), and small 

size of our parEcles ( 8 pixels) precludes the effecEve use of convoluEonal networks and other 

common DL-based architectures. However, we did not test any standard models for object 

detecEon such as Yolov8 or FairMOT [44], so it is possible there are available architectures that 

outperform the tradiEonal methods. A more rigorous invesEgaEon of all available DL models is 

needed to determine state of the art performance, and thus develop an accurate comparison 

between tradiEonal and DL-based methods. 

TrackMate is one of the most popular methods for parEcle tracking in the field of 

biological imaging. TM runs through ImageJ [45], which makes it challenging to script PT analysis. 

However, TM has shown high levels of accuracy [26], and its use within ImageJ means it is well 

suited for quick analyEcal workflows where visual inspecEon of results is necessary. TM allows the 

user to pick from a variety of linking methods, but we only chose to analyze the Kalman and Linear 

Assignment Problem (LAP) methods. The Kalman method [46] uses the autocorrelaEve tendencies 

of trajectories to predict the velociEes of parEcles, and therefore their posiEons in subsequent 
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frames. The LAP method creates a cost matrix that finds the best match for each parEcle between 

two frames [47]. The cost matrix can be assigned addiEonal variable-specific penalEes that can 

improve linking, although this feature was not explored in our study. Both methods allow for gap-

filling of parEcles that were missed in one frame and appeared up to a threshold number of frames 

aSer they were lost. TM also offers advanced filtering opEons that allows for easy removal of 

trajectories appearing to be erroneous. For example, TM allows for filtering based on the number 

of spots, track length, mean, min, and max speed, direcEonal change rate, and linearity of forward 

progression. 

Trackpy (TP) is another popular PT method wriZen in Python, which makes it generally 

more scriptable than TM. However, this also means that some programming abiliEes are needed 

to effecEvely use this PT method. Furthermore, many of the trajectory filtering and visualizaEon 

features that TM has are not part of the TP API, and would need to be manually coded from 

scratch. One area that TP excels in is its analysis funcEons. The API has funcEons to calculate pair 

correlaEons, MSDs, parEcle driS, van Hove correlaEons, and velocity correlaEons (amongst other 

funcEons). The linking algorithm for TP is based off the Crocker-Grier algorithm [48], one of the 

fundamental algorithms that many PT codes use in some variaEon. TP also has a special linking 

funcEon that incorporates some velocity predicEon element (“NearestVelocityPredict”), which 

was used for all our experiments. This velocity-based linking algorithm differs from the Kalman 

filter in that the Kalman filter considers the history of a trajectory (accounts for velocity variaEon 

in Eme), whereas the TP linking algorithm considers the velocity of the nearest parEcle (accounts 

for velocity variaEon in space). 

V-TrackMat is a new Matlab-based PT method developed by some of our co-authors that 

has been successfully applied to tracking parEcles in three-dimensional and bioclogged 
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environment [49, 50]. The version of the code used in this chapter can be found at 

hZps://github.com/mberghouse/V-TrackMat. The development of this code was moEvated by the 

need for a customized MATLAB-based code for 2D and 3D PT to both allow a secondary linking 

phase between anachronisEc trajectories and further overcome the current limitaEons of TM and 

TP for crowded suspension and long-Eme image acquisiEons. Indeed, accuracy of TP has been 

reported to suffer for crowded suspension [51] while TM resulted in several crash episodes during 

the linking step for benchmark experiments of parEcle tracking in microfluidics-disordered media 

for a total number of frames above 2000 at 𝑃𝑆𝐷𝑅 ≅ 1.4. Although V-TrackMat has been 

developed for PT of 1 µm diameter latex parEcles in microfluidics applicaEon under laminar flow, 

it can be used for a variety of other PT applicaEons. It first uses a nearest-neighborhood criteria 

by calling the ipdm rouEne between coordinates of centers detected in two consecuEve frames, 

named as parents for parEcles detected at frame n and daughter for frame n + 1. The pairing has 

been opEmized by assuming that the frame rate is high enough so that the mean parEcle’s jump 

is lower than the mean inter-parEcle distance, miEgaEng the effect of intermiZent behavior of a 

single parEcle’s velocity under flow in confined media. Thus, the 2-frame velocity is computed for 

each pairing and the ipdm funcEon is computed between daughters and the projecEon of the 

future posiEon for the parents displaced by the quanEty v dt along the tangent direcEon. ASer 

the first loop over the full set of frames is computed, the set of reconstructed trajectories is then 

processed by gluing anachronisEc trajectories in the 2D+2D space. This is reasonable for high Pe 

and low Re where parEcles passing through the same posiEon with the same velocity are, in fact, 

following the same streamline. To glue trajectories, a pairing was first assigned by minimizing 

distances between parent ending points and daughter starEng points. The glue is accepted only 

for pairing whose distance is compaEble with a jump allowed by both parents ending velocity and 

https://github.com/mberghouse/V-TrackMat
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daughter starEng velocity. For mulEple pairings, the criteria of the minimum in of �𝑣g9 − 𝑣$1� is 

then applied. This second loop of gluing anachronisEc parEcles can potenEally be iterated mulEple 

Emes unEl no new pairings are assigned. The algorithm can be applied to track parEcles from Eme 

lapse images acquired over different fields of view. A common challenge for any PT code is the 

increasing memory cast with both the increasing Eme and new incoming parEcles as a new ID 

must be assigned while keeping track of the already exisEng ones. This means that the size of the 

matrix composed by the number of trajectories by the number of frames increases linearly with 

Eme and flow rate. To save compuEng Eme and avoid memory dredge, V-TrackMat code considers 

parEcles as lost if, for 5 consequent frames, no pairing has been assigned. In this case, V-TrackMat 

saves the trajectories on the fly into binary files and finally removes them from the matrix. 

Although our goal in this chapter was to test the ability of the linking algorithms for each 

code, it worth noEng that detecEon is an important part of the PT workflow. V-TrackMat’s detector 

was specifically designed to find bacteria in parEcular sets of experimental imagery, and we found 

that it did not perform well for the simulated imagery used in this chapter. Both TP and TM use 

robust detecEon methods, and no significant differences were observed from each of the 

detecEon methods upon iniEal inspecEon. For V-TrackMat, we detected spots with TM, then 

exported these spots to Matlab to perform linking with V-TrackMat. 

 

3.3.3 Comparative Metrics 

 
To understand the true performance of each PT method, we used mulEple types of comparaEve 

metrics. We used “classical” staEsEcal methods, which are similar to those described in [26]. In 

addiEon, we used experimental staEsEcs and visual analysis of trajectories. The classical staEsEcs 

used in this study are the false link rate (Fig. 3a), mean path length (Fig. 3b), and the Euclidean 
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distance (Fig. 3c). These staEsEcs are aimed at diagnosing basic problems with parEcle detecEon, 

linking frequency, and linking accuracy (the percent of correct links between two frames). Since 

we simulate the movement of tracer parEcles in a microfluidic device under constant flow, we also 

chose to use experimentally relevant staEsEcs as PT comparison metrics. 

 

 

Figure 3. This figure shows visual representa3ons of all classical sta3s3cs, and one experimental sta3s3c, 
used to compare par3cle tracking performance in this chapter. In all panels, predicted points and trajectories 
are green, and ground truth points and trajectories are blue. (a) Snapshot of par3cles in a single frame to 
illustrate the false link rate (FLR). A false posi3ve implies an erroneous point that was linked to another point 
in a previous frame. A false nega3ve implies a missing link for a true point. Thus, FLR tests par3cle detec3on 
and missed links on a frame-by-frame basis. (b) Mean path length (MPL), shown here for two ground truth 
trajectories of length 7. Subscript i represents each successive line segment in 3me, and subscript j 
represents each trajectory. MPL tests missed links over 3me, also known as trajectory splilng. (c) Mean 
Euclidean distance (ED), shown here for one ground truth trajectory and one predicted trajectory (each of 
length 7). ED tests localiza3on, detec3on, and linking accuracy (but in our case of simple par3cles and no 
background, primarily linking accuracy). To compute this sta3s3c, we search for ground truth trajectories 
that are on average less than two pixels away from the predicted trajectory. From the set of matching 
trajectories, such as those pictured in the figure, we can calculate the ED. (d) Diagram of two ground truth 
trajectories (shown in dark blue) with poten3al PT-based trajectories (shown in light blue, yellow and green, 
with each color signifying a different trajectory predicted by a PT method) on top to illustrate the classical 
errors (and concept of the turn angle θ (t)) discussed in this chapter. 

a. b.

c. d.
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To compare each PT code for the specific scenario of microbial transport, we used velocity 

autocorrelaEons 𝐶H(𝜏) = 〈|𝑣2|(𝑡 + 𝜏) ∙ 𝑣(𝑡)〉, speed-angle joint probability density contours, 

which, are calculated from the parEcle speed 𝑣g =
a(/&23A/&)!J(b&23Ab&)!

∆#
 and turn angle 𝛼# =

𝑡𝑎𝑛A7 hb&2!Ab&23
/&2!A/&23

i − 𝑡𝑎𝑛A7 hb&23Ab&
/&23A/&

i data, and mean square displacements 𝑀𝑆𝐷(𝑡) =

7
d
∑ |𝑟S(𝑡) − 𝑟S(0)|5d
Se7  (Fig. 3d) as our experimental metrics. The MSD and Cv for each PT output 

were calculated via the MSDAnalyzer [52], a companion postprocessing program for TrackMate. 

All other staEsEcs were calculated via scripts wriZen in-house. 

  

3.4 Results 

3.4.1 Trajectory Patterns Illuminate PT Method Variations 

To understand PT performance at a visual level, we ploZed a small window of trajectories 

for the bimodal and unimodal simulaEons for PSDR ≤ 1.7 (Fig. 4). Some selected trajectories for 

PSDR ≥ 3.0 are also given in Supplementary Fig 3. For the bimodal simulaEon at PSDR = 3, 

trajectories from all PT codes reasonably mirror the simulaEons. However, this congruence quickly 

diminishes at PSDR = 1.7 (Fig. 4b), with marked deviaEons underscoring the nuances of each 

linking algorithm. It’s noteworthy that for PSDR ≤ 1.7 (Figs. 4a and 4b), trajectories close to the 

cylinders (i.e., slow trajectories) are detected more accurately compared to the faster trajectories 

in the pore throat. In addiEon to increased speed, parEcles in the pore throat exhibit spaEal 

convergence, which results in a large local decrease in PSDR. This observaEon carries over to the 

unimodal simulaEons (Fig. 4c), which exhibit consistent paZerns across PT codes. A pervasive 

trend emerges: PT codes tend to underesEmate the likelihood of parEcles moving at high  
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Figure 4. Sample trajectories for all PT codes for the low-PSDR bimodal and unimodal simula3ons. Each plot 
shows a 400x400 pixel sec3on of the whole domain. Within a plot, each line corresponds to a unique 
trajectory (with random colors used to show the contrast between individual trajectories). (a) Bimodal 
simula3ons for PSDR = 1.1. (b) Bimodal simula3ons for PSDR = 1.7. (c) Unimodal simula3ons for PSDR = 1.6. 
All algorithms suffer from trajectory splilng and erroneous linking for these low-PSDR simula3ons. TM-
Kalman, TM-LAP and V-TrackMat clearly outperform TP in all scenarios. Although TM-Kalman and V-
TrackMat have more clearly false links that stretch across the pore space (jump from one group of 
streamlines to another), TM-LAP has a much larger amount of zig-zagging trajectories caused by erroneous 
links between close par3cles. The low-PSDR unimodal simula3ons generally show the same trends as the 
bimodal simula3ons; however, the differences between TM-Kalman, TM-LAP, and V-TrackMat are less 
significant. 
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velociEes for a variety of simulated speed distribuEons, especially when spaEal convergence 

further reduces PSDR.  

Probing deeper into individual PT code performances for the bimodal simulaEons, 

especially at lower simulated PSDRs, TM–Kalman stands out with superior accuracy, although it’s 

not exempt from erroneous links at elevated speeds. In parEcular, TM-Kalman shows a significant 

amount of erroneous long links across pore spaces (streamlines don’t cross the pore space in our 

bimodal simulaEons, so any link across the pore space is a false link). TP shows the greatest 

amount of false links and split trajectories (further explained in next secEon) at PSDR ≤ 1.7 (Figs. 

4a and 4b). TM-Lap similarly exhibits pronounced difficulEes in linking high-speed parEcles, 

though not as significant as TP. At PSDR = 1.7, V-TrackMat trajectories generally resemble those of 

TM-LAP and TM-Kalman in terms of accuracy, although there are a smaller number of V-TrackMat 

trajectories. At PSDR = 1.1 (Fig. 4a), TM-Kalman and V-TrackMat appear to outperform TM-LAP. 

Although TM-Kalman and V-TrackMat may have more erroneous links across the pore space, TM-

LAP has a much greater number of zig-zagging trajectories (links going back and forth between 

two or more different parEcles), and less true trajectories that last a significant distance. Thus, 

although V-TrackMat’s linking algorithm is less aggressive than either TM algorithm, V-TrackMat 

captures a substanEal porEon of accurate trajectories. 

The unimodal simulaEons at PSDR = 4 (Supplementary Figure 3) further show that all 

algorithms besides TP have robust performance regardless of geometry. At PSDR = 1.6 (Fig. 4c), all 

algorithms show problems with false links and split trajectories. Similar to the bimodal results, V-

TrackMat and TM-Kalman seem to have a larger amount of accurate trajectories than TM-LAP. 

Thus, general algorithm performance is largely independent of the geometry in which the parEcles 

are tracked. However, it should be noted here that the range of possible parEcle speeds in our 
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simulaEons, which is largely impacted by geometry and flow condiEons, only spans 3-4 

magnitudes (Figs. 2a and 2b). High fidelity simulaEons of Lagrangian parEcles in porous media 

show speed distribuEons that range up to 8 orders of magnitude [53], so we can’t be confident 

that our findings (relaEve rankings of PT performance) would remain accurate for transport in any 

geometry or flow condiEon. Furthermore, to focus on linking, we didn’t include any background. 

However, in real experiments that image bacteria in microfluidic devices, the geometry has a 

significant impact on tracking performance due to the presence of light scaZering around grains 

[21]. 

 

Figure 5. This figure shows the a comparison between the speed distribu3ons for each PT code for the 
lowest-PSDR bimodal (a) and lowest-PSDR unimodal (b) simula3ons. The speed distribu3ons in (a) are 
normalized by the mean speed of the lowest-PSDR bimodal simula3on (19.6 pixels/frame). The speed 
distribu3ons in (b) are normalized by the mean speed of the lowest-PSDR unimodal simula3on (11.3 
pixels/frame). This figure shows the ability of each PT code to handle significantly different distribu3ons of 
par3cle speeds. 
 

To further understand differences in our PT codes, we plot both the simulated (ground 

truth) and PT-generated normalized speed distribuEons for our lowest PSDR bimodal (Fig. 5a) and 

unimodal (Fig. 5b) simulaEons. To quanEfy these differences, we calculate the 1-Wasserstein 

a. b.
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distance (W1) between each ground-truth and tracked speed PDF (Table 2). Visual inspecEon of 

the PDFs, as well as the trends in (W1), indicate that TM-Kalman is able to reproduce the simulated 

speed distribuEons the best, followed by V-TrackMat, then TM-LAP, then TP. InteresEngly, each PT 

code besides TP overpredicts the fastest speeds for the bimodal simulaEon, but underpredicts the 

fastest speeds for the unimodal simulaEons. During tracking, an effort was made to use the highest 

possible linking distance that did not result in a significant number of mislinks. Because the range 

of speeds for the unimodal simulaEons is greater than that of the bimodal simulaEons, we were 

unable to capture the fastest speeds in the unimodal simulaEon without causing significant false 

links. 

Table 2. W1 between ground truth speed distribu3ons and the speed distribu3ons from each PT method for 
the lowest PSDR bimodal and unimodal simula3ons. 

 Bimodal Unimodal 
TM-Kalman 0.1146 0.1363 
TM-LAP 0.3400 0.2489 
TP 0.7536 0.6349 
V-TM 0.3434 0.2158 

 

3.4.2 Relationship Between Classical Statistics and PSDR 

To develop a more large-scale understanding of the performance of each PT code, we use 

a variety of classical and experimental staEsEcs (Fig. 3). Each of these classical staEsEcs target 

different potenEal sources of linking error. Because the imagery had a high signal to noise raEo, 

there were not many errors in the detecEon stage of PT for each simulaEon (only occurring due 

to overlapping parEcles). Therefore, the false link rate (FLR) primarily shows the potenEal for a 

parEcle to be unlinked, meaning there were no probable candidates for linking in nearby frames 

(Fig. 3a). The mean path length (MPL) shows the propensity for trajectories to be fractured due to 

lack of linking (Fig. 3b), and the Euclidean distance (ED) indicates the likelihood for links to move 
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back and forth between parEcles, sampling a large number of parEcles for a single trajectory (Fig. 

3c). A realisEc diagram of each of these potenEal errors is shown in Figure 3d. Plokng these 

staEsEcs over a range of PSDRs reveals that TM–Kalman and TM-LAP consistently eclipse the 

performance of other PT methods (Fig. 6). In parEcular, the bimodal simulaEons reveal several 

task-relevant paZerns. The mean path lengths (Fig. 6a) illuminate the tendency for V-TrackMat 

and TP to generally have shorter trajectories compared to either TM method. This shortening in 

TP’s trajectories is significantly accentuated, especially at low PSDR levels. We aZribute this 

phenomenon to ’trajectory splikng’, where a parEcle is tracked for only a fragment of its presence 

in the field of view. Intricacies of TP’s linking algorithm, which narrows the search space when 

inundated with potenEal parEcles for the ensuing frame, underpin this observaEon. While 

effecEve for slower-moving parEcles, especially in terms of memory requirements and algorithm 

speed, this linking strategy is less adept at tracking high-velocity parEcles in a directed flow. For V-

TrackMat, the trajectory splikng seems to be a result of its more stringent linking algorithm. 

Although all PT codes try to match all trajectories during linking, V-TrackMat seems to have more 

extreme criteria that prevent incorrect links, as shown from the sample trajectories (Fig. 4). Thus, 

many trajectories are lost by V-TrackMat due to the algorithm’s necessity for high-probability links. 

Furthermore, the FLRs (Fig. 6b) point towards V-TrackMat’s propensity to either miss or 

inaccurately record a parEcle in a frame. However, because this error is likely a result of careful 

linking, the classical staEsEcs may exaggerate the experimental errors for tracking algorithms such 

as V-TrackMat’s. The EDs (Fig. 6c) further highlight that TP and V-TrackMat oSen record the most 

substanEal discrepancies between the actual and tracked posiEons. This observaEon, parEcularly 

for V-TrackMat, implies that a rigorous linking algorithm doesn’t invariably lead to precise 
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trajectory reconstrucEons. Although untested, it is theoreEcally plausible that during velocity-

based linking or gluing, parEcles are incorrectly linked because they have similar velociEes. 

 

 

Figure 6. This figure shows the results of the classical compara3ve sta3s3cs for both the bimodal and 
unimodal simula3ons. For all plots, the size of the sca`er points represent the par3cle density of the 
simula3on (larger points means greater par3cle density). a-c correspond to the bimodal simula3ons, and d-
f correspond to the unimodal simula3ons. (a) Mean false link rate (error due to detec3on and temporally 
local missed links). (b) Mean path length of all PT-obtained and simulated trajectories. The ground truth is 
shown as a black X. This sta3s3c describes how oPen full trajectories are split (linking error over 3me). (c) 
Mean Euclidean distance between true and predicted trajectories (error due to localiza3on and linking 
error). (d-f) Repeat of a-c but for the unimodal simula3ons. These figures generally indicate that V-TrackMat 
and TP have the worst “classical” performance. Furthermore, classical sta3s3cs tend to follow a power law 
trend as a func3on of PSDR. Power law fit equa3ons and goodness of fit are given in Table 3. 
 

b.a.

e.

c.

d. f.
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For unimodal simulaEons, classical staEsEcs (Figs. 6d-6f) generally perform beZer than 

their bimodal counterparts. The bimodal simulaEons have higher mean speeds than the unimodal 

soluEons (Table 1). Furthermore, the bimodal simulaEons (Fig. 1a) have a larger number of 

parEcles at high speeds, which causes more difficulty in parEcle tracking. In addiEon, the unimodal 

simulaEons show a greater range of speeds and are generally more reminiscent of speed 

distribuEons of parEcles in porous media [54]. Thus, the unimodal simulaEons likely offer a more 

comprehensive representaEon of generic PT code efficacy in porous media. While the general 

trends mirror those in the bimodal findings, V-TrackMat performs comparaEvely beZer in the FLR 

metric (Fig. 6d) and worse in the ED metric (Fig. 6f), and TP performs beZer in the ED metric (Fig. 

6f). TP’s aforemenEoned challenges with fast-moving parEcles mean its performance slightly 

improves in unimodal sekngs, which aren’t dominated by high speed trajectories. SEll, TP’s mean 

path lengths (Fig. 6e) depict a sharp decline as PSDR decreases, implying the persistent issue of 

trajectory splikng in both bimodal and unimodal sekngs. 

Table 3. Power law fit equa3ons and goodness of fit for ED, MPL and FLR. 

Bimodal a b R2 RMSE 
ED 0.922 -0.039 0.941 0.0210 
MPL (TP) 238.9 0.268 0.510 141.00 
MPL (TM-Kalman) 529.3 0.046 0.434 36.890 
MPL (TM-LAP) 510.0 0.056 0.797 39.500 
MPL (V-TrackMat) 363.9 0.161 0.767 55.250 
FLR (TP) 0.023 -0.508 0.884 0.0041 
FLR (TM-Kalman) 0.019 -0.342 0.813 0.0067 
FLR (TM-LAP) 0.022 -0.319 0.261 0.0080 
FLR (V-TrackMat) 0.212 -0.783 0.875 0.0288 

Unimodal a b R2 RMSE 
ED 0.849 -0.019 0.923 0.0323 
MPL (TP) 118.9 0.448 0.885 55.620 
MPL (TM-Kalman) 425.9 0.059 0.503 29.770 
MPL (TM-LAP) 432.0 0.052 0.940 14.160 
MPL (V-TrackMat) 370.4 0.101 0.881 17.960 
FLR (TP) 0.043 -1.226 0.901 0.0022 
FLR (TM-Kalman) 0.008 -0.255 0.142 0.0032 
FLR (TM-LAP) 0.007 -0.223 0.110 0.0033 
FLR (V-TrackMat) 0.045 -0.690 0.931 0.0032 



 

 
127 

The results of the classical staEsEcs imply that TM-Kalman and TM-LAP outperform V-

TrackMat in all cases, but from the sample trajectories (Fig. 4), we have shown this to not be true. 

Also, the trajectories show TP performs much worse than the other algorithms at low PSDR, but 

this is not reflected by the FLR and ED metrics. We posit that the primary reason for the disconnect 

between the classical staEsEcs and the sample trajectories is that the FLR and ED metrics 

underpenalize aggressive linking. The FLR will always be lower when more links are forced, since 

the probability of false posiEve detecEon is very low. The ED metric will always be higher when 

more links occur between different trajectories, but if the trajectories are nearest neighbors, then 

the error will be relaEvely small. Thus, long trajectories and links across the pore space (such as 

those of V-TrackMat and TM-Kalman) will result in more ED error than zig-zagging trajectories 

between close neighbors (such as TM-LAP) will. UlEmately, the FLR and ED underpredict PT error 

for nearest-neighbor based algorithms with liZle constraint for linking. As a result, these staEsEcs 

fail to grasp the nuanced differences between PT codes. 

Beyond comparing PT codes’ performances, we also demonstrate that all classical 

staEsEcs have a power law relaEonship with PSDR, although some relaEonships are more 

significant than others (Table 3). As PSDR is reduced, all PT codes generally exhibit increased ED 

and FDR, and decreased MPL. V-TrackMat and TP show a steeper relaEonship between FDR and 

PSDR than either TM algorithm, which generally indicates that the TM algorithms are more robust 

with respect to FLR performance over a range of PSDRs (Figs. 6a and 6d). V-TrackMat and TP also 

show steeper relaEonships between MPL and PSDR, further demonstraEng the resilience of the 

TM algorithms when considering classical linking failures. V-TrackMat and TP also generally show 

more significant (lower RMSE) power-law relaEonships than the TM algorithms, indicaEng that 

classical PT error for V-TrackMat and TP is more predictable. Furthermore, classical staEsEcs from 



 

 
128 

unimodal simulaEons (Figs. 6d-6f) present slightly different power law relaEonships compared to 

those from bimodal simulaEons (Figs. 6a-6c). Thus, the choice of PT algorithm, and variaEons in 

ground truth parEcle speed distribuEons, can influence the specifics of these power law 

relaEonships. 

3.4.3 Experimental Statistics Highlight Task-Specific PT Performance 

The classical staEsEcs from bimodal simulaEons (Fig. 6) echo many paZerns observed in 

the sample trajectories (Fig. 4). However, there are notable deviaEons. The sample trajectories, 

for instance, present V-TrackMat as clearly superior to TP and comparable or superior to TM-LAP. 

To discern which mode of analysis — comparaEve staEsEcs or visual trajectory inspecEon 

— offers a more accurate picture of PT performance, we used a variety of experimental staEsEcs. 

In the bimodal simulaEons, the normalized speed-angle joint probability density difference 

heatmaps rank TM–Kalman as the top performer, with V-TrackMat and TM–LAP occupying 

intermediate posiEons and TP trailing (Fig. 7). All codes demonstrate strong tracking performance 

at PSDR ≥ 2.5, but V-TrackMat and TP’s limitaEons become evident at PSDR ≤ 2.3. TM-LAP and 

TM-Kalman significantly outperform V-TrackMat for PSDR ≥ 1.7. However, at PSDR = 1.1, V-

TrackMat performs beZer than TM-LAP, as shown by the large amount of overpredicEon for the 

probability of low speed and high turn angle parEcles (Fig. 7). This disparity is likely rooted in the 

LAP algorithm’s propensity for aggressive linking that doesn’t take parEcle velociEes into account, 

in contrast to V-TrackMat’s more conservaEve velocity-based approach. Consequently, at PSDR = 

1.1, while LAP is prone to errant predicEons for high speed parEcles and forces links with large 

turn angles, V-TrackMat is more likely to keep parEcles unlinked, and only significantly 

overpredicts low turn angles. In other words, V-TrackMat oSen refrains from making connecEons 

altogether, and when V-TrackMat does have false links, its reliance on expected parEcle velociEes, 
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akin to TM-Kalman, ensures that the errors are relaEvely benign (with respect to velocity and angle 

distribuEons) compared to TM-LAP. 

In the context of unimodal simulaEons (Supplementary Figure 4), both the V-TrackMat 

and TM algorithms predict speed and angle staEsEcs with near perfecEon. V-TrackMat and TM-

Kalman perform slightly beZer than TM-LAP, which can be seen from the slightly greater 

underpredicEon of high speed and low turn angle parEcles for TM-LAP at PSDR ≤ 2.6. TP shows 

relaEvely poor performance for all PSDR ≤ 3.1. These observaEons further reinforce the general 

trends seen in the sample trajectories (Fig. 4). They confirm the case presented by the classical 

staEsEcs that TM-Kalman has superior performance, but they significantly contrast the relaEve 

classical results of V-TrackMat and TM-LAP. Specifically, the speed-angle distribuEons (both 

bimodal and unimodal) show that TM-LAP may be favorable for PSDR ≥ 1.7, but that V-TrackMat 

is superior for PSDR ≤ 1.6. 

Velocity autocorrelaEon funcEon (Cv) and mean squared displacement (MSD) analysis (Fig. 

8) further corroborates the trends evident in the speed-angle heatmaps. It should be noted here 

that we only present the first 20 frames of the lowest and highest-PSDR simulaEons in the main 

text of this chapter, although the full Cv and MSDs for all simulaEons can be observed in 

Supplementary Figures 5 and 6. Because our simulaEons don’t use reinjecEon to keep the number 

of parEcles in the field of view relaEvely constant, the Cv and MSDs for our simulated parEcles are 

unrealisEc past 20-30 frames. Since the focus of our analysis is on the relaEvely accurate 

simulaEon of dispersing parEcles in porous media, we chose to focus on the subset of our results 

that are the most realisEc.  

At 𝑃𝑆𝐷𝑅 = 34.3	– 	42.8, all PT methods align closely with the simulated autocorrelaEons 

and MSD raEos. There is some slight deviaEon for the MSD raEo at late Emes for the bimodal  
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Figure 7. Speed-angle joint probability density difference heatmaps for the bimodal simula3on. Speeds 
determined from par3cle tracking (Sp) are normalized by the mean speed of the respec3ve simula3on (Ssim). 
Red corresponds to an underpredic3on of probability density, blue corresponds to an overpredic3on of 
probability density, and white corresponds to an accurate probability density predic3on within the speed-
angle feature space. These results generally show the same trends as the sample trajectories (Fig. 1). At 
PSDR = 2.5, all algorithms show strong performance as indicated by the lack of strong color. All PT methods 
besides Trackpy and V-TrackMat show good replica3on of the simula3on for PSDR ≥ 1.7. At PSDR = 1.1, TM-
Kalman s3ll performs best and TP performs worst, but V-TrackMat surprisingly outperforms TM-LAP. Thus, 
at very low PSDR, velocity-based algorithms result in significant improvements to PT performance. 

PSDR = 1.7PSDR = 2.3

Simulation

V-TrackMat

Trackpy

TM - LAP

TM - Kalman

PSDR = 2.5 PSDR = 1.1
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Figure 8. MSD ra3os and VACFs for unimodal and bimodal simula3ons for high (a and c) and low (b and d) 
PSDRs. The MSD ra3o is caluculated as the MSD obtained from par3cle tracking divided by the simulated 
MSD. An MSD ra3o of 1 implies perfect accuracy. The bimodal MSD ra3os are shown by dashed lines, and 
the unimodal MSD ra3os are shown by solid lines. The simula3on, or ground truth, is black, and the results 
from each PT method are different colors. For the unimodal simula3ons, PSDR = 34.3 (a and c) or PSDR = 1.6 
(b and d). For the bimodal simula3ons, PSDR = 42.8 (a and c) or PSDR = 1.1 (b and d). These figures generally 
confirm trends present in the other experimental results. Furthermore, the MSDs and VACFs generally show 
the same trends, implying that a good predic3on of MSD allows for a good predic3on of Cv. However, unlike 
the other experimental sta3s3cs, the Cv is not a reliable proxy for general PT performance. 
 

simulaEon for TP and V-TrackMat (Fig. 8c), but generally, all results are highly accurate. However, 

at 𝑃𝑆𝐷𝑅 = 1.1	– 	1.6, all PT methods show large deviaEons in autocorrelaEon and MSD raEo. The 

PSDR = 34.3 - 42.8 PSDR = 1.1 - 1.6

a. b.

c. d.

BimodalUnimodal
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autocorrelaEon for the low PSDR bimodal simulaEon (Fig. 8b) shows decent performance for TM-

Kalman, but poor performance for all other PT methods. The repeEEve moEon of the Cv is 

indicaEve of the wave-like periodic movement of the parEcles dispersing through the lakce-like 

geometry of the bimodal simulaEons. TM-Kalman is slightly able to capture this feature of the 

autocorrelaEon, but the other PT codes are not. The most likely explanaEon for this lies in the 

false links and splikng of fast trajectories. As previously discussed, as parEcles travel through the 

pore throat, they get closer together and speed up, which causes a decrease in the local PSDR. 

Thus, the Cv reveals that TM-Kalman is more likely to capture these fast/dense parEcles in the pore 

throats than the other PT codes are. The unimodal results for the Cv at low PSDR (Fig. 8b) 

surprisingly show that V-TrackMat outperforms TM-Kalman, and TP outperforms TM-LAP. 

However, the full Cv (Supplementary Figure 4) indicates the TM-LAP outperforms TP at t ≥ 30. 

Likely, the Cv for TP is relaEvely accurate at early Emes because TP can only track very slow 

parEcles, so there are no significant false links that would cause velocity decorrelaEon between 

successive Emesteps. TM-LAP, on the other hand, can track much faster parEcles, but may also 

erroneously link these fast parEcles, meaning a greater amount of velocity decorrelaEon. Thus, 

although it is important to know how accurate the Cv is for general analysis of parEcle transport, 

the Cv accuracy can’t be used as a general proxy for total parEcle tracking accuracy.  

The MSD raEos for low PSDR (Fig. 8d) show significant deviaEons from the simulated MSD 

for each PT code. Both the bimodal and unimodal results show TM-Kalman is able to most closely 

follow the true MSD (i.e., have an MSD raEo of 1), then V-TrackMat, then TM-LAP, and finally TP 

shows a complete disconnecEon from the true MSD. InteresEngly, the unimodal simulaEons show 

an improvement in the MSD raEo over Eme, which indicates that for each PT code, the history of 

previous parEcle posiEons and links can improve the accuracy of tracking. For the bimodal 
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simulaEons, we see a decrease in the accuracy of the MSD raEo over Eme (Fig. 8d). However, the 

full Eme-series for the lowest PSDR bimodal simulaEon (Supplementary Figure 5) shows a 

significant improvement in the MSD accuracy over Eme for both V-TrackMat and TM-Kalman. 

Thus, velocity-based algorithms show a clear advantage in late Eme predicEon of MSDs for low-

PSDR scenarios, regardless of geometry. 

Generally, our experimental staEsEcs reveal that while rudimentary comparaEve staEsEcs 

can offer broad insights into PT code competencies across various tracking scenarios, they might 

fall short in pinpoinEng opEmal codes for specific parEcle moEons with parEcular analyEcal 

objecEves. In our bacterial dispersion simulaEon within porous media, these staEsEcs fail to 

elucidate speed, angle, autocorrelaEon or displacement distribuEon accuracies — all crucial for 

comprehending bacterial transport. Furthermore, these comparaEve staEsEcs tend to 

underpenalize aggressive linking. Thus, basic comparaEve staEsEcs might not capture the full 

spectrum of PT code capabiliEes. A more complete analysis, which can be done through a variety 

of staEsEcal and visual methods, is indispensable for discerning the opEmal PT code tailored to 

specific condiEons. 

3.4.4 PT Performance for Simulations with Noisy Trajectories 

While the primary analysis in this chapter revolves around simulaEons where trajectories only vary 

in speed and parEcle density, we have also provided an analysis of PT performance for simulaEons 

that contain more noise depicEng experimental errors in video capture and processing. 

Specifically, we analyzed PT performance for simulaEons in which the parEcles had enhanced 

random displacement (Gaussian distribuEon with µ = 0 and σ = 2 pixels) added to the purely 

advecEve tracks, and 2% of the parEcles were dropped in any given frame to account for parEcle 

intermiZency. The random displacement is a simple representaEon of a variety of experimental 
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Figure 9. Sample trajectories for all PT codes for the low-PSDR bimodal and unimodal simula3ons with 
random mo3on and 2% par3cle intermi`ency. Each plot shows a 400x400 pixel sec3on of the whole domain. 
Within a plot, each line corresponds to a unique trajectory (with random colors used to show the contrast 
between individual trajectories). (a-e) Bimodal simula3ons for PSDR = 1.5. (f-j) Unimodal simula3ons for 
PSDR = 1.5. (k-o) Unimodal simula3ons for PSDR = 8.1. Compared with Fig. 4, this figure (specifically the top 
leP of f-j) shows a slight decrease in tracking performance for similar PSDR due to the addi3on of trajectory 
noise. 
 

phenomena/posiEoning errors such as diffusion, camera jiZer, and/or oscillaEons in parEcle 

brightness. The intermiZency represents parEcles moving in and out of the focal plane, which can 

also be impacted by diffusion, parEcle-parEcle interacEons, parEcle-wall interacEons, and camera 

exposure Eme. Both of these changes can be generalized as increasing the noise of the trajectories 

in the simulaEons. The sample trajectories of the lowest PSDR simulaEons with the intermiZent 

and random-moEon parEcles (Fig. 9) show the same general trends as those of the simulaEons 

with minimal noise (Fig. 4), but for each PT code the errors are slightly higher in the case of the 

noisy trajectories. The speed-angle distribuEons for the noisy unimodal simulaEons (Fig. 10) show 

a. b. c. d.
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that TP clearly has the worst performance for PSDR ≤ 2.3 . For the highest PSDR noisy unimodal 

simulaEon, the performance of all PT codes are comparable. At the lowest PSDR, TM-Kalman once 

again shows the best performance. Similar to the unimodal results with minimal trajectory noise 

(Supplementary Figure 4), V-TrackMat performs beZer than TM-LAP in all cases besides the 

highest-PSDR simulaEon. 

UlEmately, these results indicate that trajectory noise such as large random moEons and 

parEcle intermiZency make the tracking process more error-prone, although the rankings of the 

linking algorithms are not impacted by these potenEal experimental issues. However, a more 

robust analysis of potenEal experimental errors would deal with a number of other factors such 

as signal to noise raEo and parEcle shape/size. This would also require a rigorous comparison of 

detecEon methods, which was beyond the scope of our work, but we recommend that future 

researchers compare PT codes in the context of more diverse simulaEons. 

3.4.5 Consequences of Particle Tracking Errors on Transport Analysis 

Building on our comparaEve exploraEon of PT codes, the findings from the bivariate 

speed-angle heatmaps, MSDs, and Cv (Figs. 7 and 8, and Supplementary Figures 4, 5, and 6) shed 

light on the dispersion dynamics of tracer parEcles within porous media. Specifically, they 

underscore how inaccuracies introduced by PT errors can skew transport analysis. A predominant 

manifestaEon of PT error arises from false links (Fig. 4d), leading to a systemaEc underesEmaEon 

of high-speed parEcles (Figs. 4, 5 and 7). This, in turn, results in a conservaEve esEmaEon of 

parEcle speeds (Figs. 5 and 7) and MSDs (Fig. 8). TP, which shows the most significant error due to 

trajectory splikng, underesEmates the parEcle speeds and MSDs to an extreme degree for low 

PSDR. 
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Figure 10. Speed-angle joint probability density difference heatmaps for the unimodal simula3ons with 
random mo3on and 2% par3cle intermi`ency. Speeds determined from par3cle tracking (Sp) are normalized 
by the mean speed of the respec3ve simula3on (Ssim). Red corresponds to an underpredic3on of probability 
density, blue corresponds to an overpredic3on of probability density, and white corresponds to an accurate 
probability density predic3on within the speed-angle feature space. Although these noisy simula3ons are 
slightly harder to track, the general trends in PT performance remain the same. 
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Other consequences of PT error, which can primarily be observed in the TP results, are 

inflated turn angles (Fig. 7) and diminished or enhanced Cv (Fig. 8a and 8b), aZributable mainly to 

trajectory splikng and erroneous linking. Furthermore, we find that in the case of the bimodal 

geometry, where there is a periodic nature to the velocity of parEcles over Eme, only TM-Kalman 

is able to slightly capture the periodicity of this autocorrelaEon. 

Our analysis also emphasizes the paramount importance of experimental condiEons 

(related to parEcle speed and density) in achieving reliable PT outcomes. In the case of minimal-

noise simulaEons, a PSDR exceeding 3 ensures nearly flawless tracking, regardless of PT algorithm. 

Conversely, a PSDR near or below 1 presents challenges for all PT codes. In scenarios characterized 

by low PSDR coupled with directed parEcle movements, algorithms that harness velocity-based 

linking emerge as the more prudent choice. In addiEon, the results for noisy simulaEons are worse 

than for simulaEons with minimal noise (Fig. 4 and Fig. 9), which highlights the need for Eght 

experimental controls to improve the visual quality of the parEcles. Although some amount of 

noise is unavoidable, these results show the importance of trying to ensure that all parEcles 

remain in the focal plane of the acquisiEon device. 

 

3.4.6 PT Algorithm Speed Comparison 

In addiEon to performance analysis, we also report how long each PT code takes to link trajectories 

(Fig. 11). Generally, TM – LAP is the fastest linking algorithm, then TP, then TM – Kalman, and V-

TrackMat is the slowest. Thus, we observe a significant trade-off between performance and 

computaEon Eme – the best PT methods at low PSDR also take the longest. However, we must 

also note that each PT code is developed in a different programming language (Python, Matalb 

and Javascript), so we are unable to fairly assess the speed of the underlying algorithms. 
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Figure 11. Amount of 3me each PT code takes during the linking stage for selected unimodal simula3ons. 
Simula3on speed is represented by sca`er point size (large = 9.9 px/frame, medium = 2.6 px/frame, small = 
0.9 px/frame). V-TrackMat consistently has the longest linking 3mes, and TM-LAP has the shortest linking 
3mes. All algorithms show a power law rela3onship between linking 3me and par3cle density. High speed 
simula3ons generally take longer to link than low speed ones, and this difference increases at higher par3cle 
density. 
 

3.4.7 Connection to Chapter 2 

The results presented in this chapter have significant connecEons to chapter 2. The flow field used 

to generate our bimodal simulaEons in this chapter are the same as the 𝜙 = 0.42 flow fields 

simulated in chapter 2 (chapter 2, Figs. 6c and 6d).  Thus, although the simulated parEcles are 

different than the bacteria in the experimental videos, the results of this chapter in reference to 

the bimodal simulaEons should generally apply to our experiments in chapter 2. Given that some 

of the videos for Geobacter and Acidovorax used for analysis in chapter 2 displayed jump lengths 

of up to 120 pixels per frame, it is reasonable to believe that some of our analysis suffers from the 

problems idenEfied in this chapter.  

To further probe this theory, we present zoomed-in trajectories (Figs. 12a-12d) and a 

comparison of speed distribuEons (Fig. 12e) for the different PT methods idenEfied in this chapter 
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for one of our experimental videos of Geobacter at 5ul/h that was used in chapter 2. The sample 

trajectories show that all algorithms do surprisingly well, although TP results in significantly more 

erroneous links than the other algorithms do. Although it was not possible to calculate PSDR for 

the experimental trajectories given the lack of ground truth data, comparison with our simulated 

data would indicate the PSDR of this simulaEon was between 2 (Fig. 4b) and 3 (Supplementary 

Figure 3). The speed pdfs (Fig. 12e) further indicate that each algorithm was able to, for the most 

part, accurately track the bacteria. Although this comparison is not exactly accurate, because the 

simulaEon PDF comes from the Eulerian flow fields and the distribuEons for each PT method come 

from Lagrangian parEcle tracking. However, we posit that the flow field is adequately sampled as 

shown by the density of the experimental trajectories (Figs. 12a-12d), meaning that flux 

correcEons are not necessary to make adequate comparisons between the two distribuEons. 

Furthermore, even if flux-weighEng were to shiS the locaEon of the simulaEon PDF, it is unlikely 

that this shiS would result in different rankings of algorithm accuracy. The results of the speed 

PDFs indicate that TM-Kalman is especially good at tracking high-speed parEcles, which backs up 

the claim other parts of this chapter that velocity-based algorithms offer improvements for 

parEcles with directed moEon. Furthermore, these results show how all PT algorithms tend to 

underpredict high-speed parEcles in this experimental sekng with fluid speeds of 𝑣< = 82.7 

µm/s, which further highlights the need for new developments in parEcle tracking that can 

improve the extracEon of moEon staEsEcs from high-speed parEcles. 

 

3.5 Discussion 

Our comprehensive analysis of PT methods underscores TM–Kalman as the leading PT 

algorithm in terms of accuracy and robustness. While V-TrackMat emerges as a strong contender 
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at low PSDR, TM–LAP stands out at high PSDR. TP, although impressive at high PSDR, falters 

notably with disconnecEon challenges at PSDR ≤ 1.7. Despite the TP authors suggesEng that  

 

 

 

Figure 12. Comparison of PT methods for one of the experimental videos used for the analysis of Geobacter 

in a 𝜙 = 0.42 porosity geometry with a flow rate of 𝑄 = 5 %&
'

 in chapter 2. Zoomed-in trajectories for 

Trackpy (TP) (a), TM-LAP (b), TM-Kalman (c), and V-TrackMat (d). The trajectories generally show strong 
performance for all PT algorithms except TP. (e) Comparison of speed PDFs for each PT algorithm in rela3on 
to the PDF obtained from the simulated flow field from chapter 2, Fig. 6d. TM-Kalman shows slight 
improvements over other methods, but all representa3ons of the speed PDF are generally accurate. 
 
 
adjusEng the “SubnetOversizeExcepEon” variable could recEfy the constrained search space at 

low PSDR, our aZempts in this direcEon were unsuccessful. However, it should be noted that we 

used TP version 0.5.0, and that a newer version may have more potenEal to recEfy this error. 

e. 
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Barring this error, TP would, in all probability, align more closely with the performance of other 

methods at low PSDR. 

It’s evident across the board that PT methods grapple with high FLRs, high ED, and 

trajectory splikng/fragmentaEon, especially at PSDR ≤ 1.7. However, we show that poor 

performance in classical staEsEcs doesn’t necessarily imply poor performance in experimental 

staEsEcs. Specifically, classical staEsEcs underpenalize aggressive linking algorithms, and 

overpenalize careful linking agorithms. In addiEon, we show that TM–Kalman, and V-TrackMat, 

which both use parEcle velociEes to enhance predicEons, exhibit marked improvements at PSDR 

= 1.1 relaEve to TM-LAP. Although TP also uses parEcle velocity informaEon to make linking 

predicEons, the SubnetOversizeExcepEon issue was much more significant than any potenEal gain 

due to velocity-based predicEons. Thus, the leveraging of velocity data, especially for parEcles 

dispersing in porous media which exhibit a wide range of potenEal speeds, emerges as a criEcal 

factor in bolstering PT predicEons. 

Beyond algorithmic evaluaEons, this work highlights some of the common errors in 

transport analysis that emerge as a result of PT error. We find that all PT codes underesEmate 

parEcle speeds and overesEmate turn angles, and that poor tracking causes a significant loss in 

the accuracy of reproducing cyclical autocorrelaEons. Furthermore, we advocate for the recording 

of video data at a minimum threshold of PSDR ≥ 3, a benchmark that promotes reliable tracking 

irrespecEve of the algorithm employed. Finally, we show that experimental noise can reduce the 

quality of the predicted trajectories from each PT code, but it doesn’t significantly impact the 

relaEve rankings of each PT code. 

While we do provide robust staEsEcal comparisons between some of the best-known 

open source PT codes, we recognize that our study is somewhat limited in scope. A more robust 
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analysis would use a wider variety of PT codes (including DL-based ones), more task-relevant 

staEsEcs to test performance across a variety of domains, more variety of parEcle moEons and 

noise, more variety in imagery type, and would enlist the creators of each code to submit the 

trajectories to be scored. Such an invesEgaEon was far beyond the scope of this chapter and would 

require a large collaboraEve effort spanning mulEple disciplines. Looking forward, we envision our 

research catalyzing advancements in PT theory in three pivotal aspects. First, we urge future 

studies to transcend the boundaries of classical staEsEcs in PT code comparisons, emphasizing the 

integraEon of experimental outcomes perEnent to specific applicaEons. Second, our findings echo 

the effecEveness of velocity-centric PT methods for dispersing parEcles in porous media, 

extending their proven efficacy from constant velocity scenarios [26] to contexts characterized by 

large velocity fluctuaEons in Eme and space. Third, we highlight the importance of maintaining a 

reasonably high PSDR to achieve precise parEcle transport analysis. 

 

Data Availability 

Most of the data used in this study can be found at hZps://doi.org/10.5281/zenodo.10891931. 

Please send any data requests to the corresponding author (Rishi Parashar). 

 

References 

1. Saxton, M. Single-par^cle tracking: the distribu^on of diffusion coefficients. Biophys. journal 72(4), 1744–1753 (1997). 
2. Hong, Q., Sheetz, M. & Elson, E. Single par^cle tracking. analysis of diffusion and flow in two-dimensional systems. Biophys. 

journal 60(4), 910–921 (1991). 
3. Daumas, F. et al. Confined diffusion without fences of a g-protein-coupled receptor as revealed by single par^cle tracking. 

Biophys. journal 84(1), 356–366 (2003). 
4. Forier, K. et al. Transport of nanopar^cles in cys^c fibrosis sputum and bacterial biofilms by single-par^cle tracking 

microscopy. Nanomedicine 8(6), 935–949 (2013). 
5. Morales, V. L., Dentz, M., Willmann, M. & Holzner, M. Stochas^c dynamics of intermiOent pore-scale par^cle mo^on in 

three-dimensional porous media: Experiments and theory. Geophys. Res. LeO. 44, 9361–9371 (2017). 
6. Bultreys, T., De Boever, W. & Cnudde, V. Imaging and image-based fluid transport modeling at the pore scale in geological 

materials: A prac^cal introduc^on to the current state-of-the-art. Earth-Science Rev. 155, 93–128 (2016). 



 

 
143 

7. Scheidweiler, D., Miele, F., Peter, H., Batn, T. J. & de Anna, P. Trait-specific dispersal of bacteria in heterogeneous porous 
environments: from pore to porous medium scale. J. The Royal Soc. Interface 17, 20200046, DOI: 
10.1098/rsif.2020.0046. 

8. Dehkharghani, A., Waisbord, N., Dunkel, J. & Guasto, J. Bacterial scaOering in microfluidic crystal flows reveals giant ac^ve 
taylor–aris dispersion. Proc. Natl. Acad. Sci. 116(23), 11119–11124 (2019). 

9. BhaOacharjee, T. & DaOa, S. Bacterial hopping and trapping in porous media. Nat. communica^ons 10(1), 2075 (2019). 
10. Dentz, M., Creppy, A., Douarche, C., Clément, E. & Auradou, H. Dispersion of mo^le bacteria in a porous medium. J. Fluid 

Mech. 946, A33 (2022). 
11. Creppy, A., Clément, E., Douarche, C., D’angelo, M. & Auradou, H. Effect of mo^lity on the transport of bacteria 

popula^ons through a porous medium. Phys. Rev. Fluids 4(1), 013102 (2019). 
12. ValloOon, P. et al. Diatrack par^cle tracking somware: Review of applica^ons and performance evalua^on. Traffic 18(12), 

840–852 (2017). 
13. Germain, D., Leocmach, M. & Gibaud, T. Differen^al dynamic microscopy to characterize brownian mo^on and bacteria 

mo^lity. Am. J. Phys. 84(3), 202–210 (2016). 
14. Ewers, H. & Schelhaas, M. Effect of mo^lity on the transport of bacteria popula^ons through a porous medium. Methods 

enzymology 506, 63–80 (2012). 
15. Dehkharghani, A., Waisbord, N. & Guasto, J. S. Self-transport of swimming bacteria is impaired by porous microstructure. 

Commun. Phys. 6, 18, DOI: 10.1038/s42005-023-01136-w (2023). 
16. Rusconi, R., Guasto, J. S. & Stocker, R. Bacterial transport suppressed by fluid shear. Nat. Phys. 10, 212–217, DOI: 

10.1038/nphys2883 (2014). 
17. BhaOacharjee, T. & DaOa, S. S. Bacterial hopping and trapping in porous media. Nat. Commun. 10, 2075, DOI: 

10.1038/s41467-019-10115-1 (2019). 
18. Jeon, H. et al. Quan^ta^ve analysis of single bacterial chemotaxis using a linear concentra^on gradient microchannel. 

Biomed. microdevices 11, 1135–1143 (2009). 
19. Birjiniuk, A. et al. Single par^cle tracking reveals spa^al and dynamic organiza^on of the escherichia coli biofilm matrix. 

New journal physics 16(8), 085014 (2014). 
20. Secchi, E. et al. The effect of flow on swimming bacteria controls the ini^al coloniza^on of curved surfaces. Nat. Commun. 

11, 2851, DOI: 10.1038/s41467-020-16620-y (2020). 
21. Wu, H. & Schwartz, D. Nanopar^cle tracking to probe transport in porous media. Accounts Chem. Res. 53(10), 2130–2139 

(2020). 
22. Linkhorst, J., Beckmann, T., Go, D., Kuehne, A. J. & Wessling, M. Microfluidic colloid filtra^on. Sci. reports 6(1), 22376 

(2016). 
23. Bevan, M. & Prieve, D. Hindered diffusion of colloidal par^cles very near to a wall: Revisited. The J. Chem. Phys. 113(3), 

1228–1236 (2000). 
24. Sholl, D., Fenwick, M., Atman, E. & Prieve, D. Brownian dynamics simula^on of the mo^on of a rigid sphere in a viscous 

fluid very near a wall. The J. Chem. Phys. 113(20), 9268–9278 (2000). 
25. Cheng, H., Hsu, C., Hung, C. & Lin, C. A review for cell and par^cle tracking on microscopy images using algorithms and 

deep learning technologies. biomedical journal 45(3), 465–471 (2022). 
26. Chenouard, N. et al. Objec^ve comparison of par^cle tracking methods. Nat. methods 11(3), 281–289 (2014). 
27. Residori, M., Praetorius, S., de Anna, P. & Voigt, A. Influence of finite-size par^cles on fluid velocity and transport through 

porous media. Phys. Rev. Fluids 8, 7 (2023). 
28. Meijering, E., Dzyubachyk, O. & Smal, I. Methods for cell and par^cle tracking. Methods enzymology 504, 183–200 (2012). 
29. Clarke, D. & Mar^n-Fernandez, M. A brief history of single-par^cle tracking of the epidermal growth factor receptor. 

Methods protocols 2(1), 12 (2019). 
30. Wiggins, C., Santos, R. & Ruggles, A. A feature point iden^fica^on method for positron emission par^cle tracking with 

mul^ple tracers. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 843, 22–28 
(2017). 

31. Travers, T., Colin, V., Loumaigne, M., Barillé, R. & Gindre, D. Single-par^cle tracking with scanning non-linear microscopy. 
Nanomaterials 10(8), 1519 (2020). 

32. Maska, M. & Matula, P. Par^cle tracking accuracy measurement based on comparison of linear oriented forests. In Proc. 
IEEE Int. Conf. on Comput. Vis. Work. 11–17 (2017). 

33. Malik, N., Dracos, T. & Papantoniou, D. Par^cle tracking velocimetry in three-dimensional flows: Part ii: Par^cle tracking. 
Exp. fluids 15, 279–294 (1993). 

34. Baek, S. & Lee, S. A new two-frame par^cle tracking algorithm using match probability. Exp. Fluids 22, 23–32 (1996). 
35. Shuang, B., Chen, J., Kisley, L. & Landes, C. Troika of single par^cle tracking programing: Snr enhancement, par^cle 

iden^fica^on, and mapping. Phys. Chem. Chem. Phys. 16(2), 624–634 (2014). 



 

 
144 

36. Bijeljic, B., Mostaghimi, P. & Blunt, M. J. Signature of Non-Fickian Solute Transport in Complex Heterogeneous Porous 
Media. Phys. Rev. LeO. 107, 204502, DOI: 10.1103/PhysRevLeO.107.204502 (2011). 

37. De Anna, P., Quaife, B., Biros, G. & Juanes, R. Predic^on of the low-velocity distribu^on from the pore structure in simple 
porous media. Phys. Rev. Fluids 2, 124103, DOI: 10.1103/PhysRevFluids.2.124103 (2017). 

38. Weller, H., Tabor, G., Jasak, H. & Fureby, C. A tensorial approach to computa^onal con^nuum mechanics using object-
oriented techniques. Comput. Phys. 12, 620 (1998). 

39. Tinevez, J. et al. Trackmate: An open and extensible pla�orm for single-par^cle tracking. Methods 115, 80–90 (2017). 
40. Ershov, D. et al. Trackmate 7: integra^ng state-of-the-art segmenta^on algorithms into tracking pipelines. Nat. Methods 

19(7), 829–832 (2022). 
41. Allan, D., Caswell, T., Keim, N., van der Wel, C. & Verweij, R. som-maOer/trackpy:  Trackpy v0. 5.0., DOI: 

hOps://doi.org/10.5281/zenodo.4682814 (2021). 
42. Midtvedt, B. et al. Quan^ta^ve digital microscopy with deep learning. Appl. Phys. Rev. 8(1) (2021). 
43. Fatemi, B., Halcrow, J. & Jaqaman, K. Geometric deep learning of par^cle mo^on by magik. Nat. Mach. Intell. 5(5), 483–

484 (2023). 
44. Zhang, Y., Wang, C., Wang, X., Zeng, W. & Liu, W. Fairmot: On the fairness of detec^on and re-iden^fica^on in mul^ple 

object tracking. Int. J. Comput. Vis. 129, 3069–3087 (2021). 
45. Abràmoff, M., Magalhães, P. & Ram, S. Image processing with imagej. Biophotonics interna^onal 11(7), 36–42 (2004). 
46. Kalman, R. A new approach to linear filtering and predic^on problems. Basic Eng. 82, 35–45 (1960). 
47. Jaqaman, K. et al. Robust single-par^cle tracking in live-cell ^me-lapse sequences. Nat. methods 5(8), 695–702 (2008). 
48. Crocker, J. & Grier, D. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179(1), 298–310 

(1996). 
49. Carrel, M. et al. Pore-scale hydrodynamics in a progressively bioclogged three-dimensional porous medium: 3-d par^cle 

tracking experiments and stochas^c transport modeling. Water resources research 54(3), 2183–2198 (2018). 
50. Carrel, M. et al. Biofilms in 3d porous media: Delinea^ng the influence of the pore network geometry, flow and mass 

transfer on biofilm development. Water research 134, 280–291 (2018). 
51. A. Alam, E. Crowd of Microswimmers. Phd thesis, Condensed MaOer [cond-mat]: Université Grenoble Alpes, Université 

Grenoble Alpes (2022). Available at hOps://theses.hal.science/tel-03894880/document. 
52. Taran^no, N. et al. Tnf and il-1 exhibit dis^nct ubiqui^n requirements for inducing nemo–ikk supramolecular structures. 

The J. cell biology 204(2), 231 (2014). 
53. Puyguiraud, A., Gouze, P. & Dentz, M. Upscaling of anomalous pore-scale dispersion. Transp. Porous Media 128, 837–855 

(2019). 
54. Nguyen, V. & Papavassiliou, D. Velocity magnitude distribu^on for flow in porous media. Ind. & Eng. Chem. Res. 60(38), 

13979–13990 (2021). 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
145 

Chapter 4: DeepTrackStat: an End-to-End Deep Learning Framework for 
Extraction of Motion Statistics from Videos of Particles 

 
4.1 Abstract 

As discussed in the previous chapter, particle tracking (PT) is a mature area of research that 

traditionally has used Gaussian filtering and nearest neighbors-based algorithms to detect and 

link features in a sequence of images. PT shares many similarities with the general task of object 

tracking, although it is specifically designed for tracking objects that are usually small and have a 

distinct shape shared amongst all particles in images that have little to no background. Although 

object tracking is also a mature area of research, transferring the computer vision techniques from 

general object tracking to PT presents significant challenges due to the sparsity and high 

resolution of PT videos. To remedy these issues, along with problems of classical PT methods 

presented in chapter 2, we present DeepTrackStat (DTS), a model that is able to bypass the 

tracking process entirely and generate accurate statistics on speed, velocity components (𝑉𝑥 and 

𝑉𝑦), and turn angle for a wide range of PT scenarios including trajectories derived from Brownian 

motion, Poiseuille flow, and porous media flow. In addition to its ability to handle a variety of flow 

types, the model is robust to large variations in particle size, shape, brightness, speed, density, 

and signal to noise ratio. One of the primary advantages of DTS is that it can reduce the time 

required to obtain the target statistics from videos of moving particles by 6x (when compared 

with classical methods). Furthermore, we show that DTS is able to predict the motion statistics of 

particles with higher accuracy than a number of classical PT methods and simple deep learning 

(DL) based methods. In addition, we show that DTS’ performance is comparable to Trackmate 

(TM), which was shown to be the top-performing PT algorithm from chapter 2, for a wide variety 

of simulated trajectories and experimental datasets of motile bacteria dispersing in porous media 
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under a range of flow conditions. We further highlight that DTS significantly outperforms TM for 

prediction of motion statistics for high-speed particles. We hope this work can be used to help 

advance DL-based methods for particle tracking, and that our model provides significant time 

savings and allows for improved analysis of particle trajectories. 

 

4.2 Introduction 

At a basic level, ParEcle Tracking (PT) is a set of algorithms used to detect bright spots and 

determine their trajectories across mulEple frames of a video. PT can be considered a subset of 

the object tracking task, and it can be applied to any video data with moving objects, but it is 

especially relevant for tracking small, spherical parEcles. This includes phenomena such as 

bacterial dispersion and transport in porous media [1-8], cellular diffusion [9,10], biofilm 

formaEon [11], chemotaxis [12-14], viral transport [15], and colloid filtraEon [16]. These 

applicaEons of PT are highly dependent on accurate measurements. For example, when PT 

algorithms tend to miss fast-moving parEcles, this can cause an underesEmate of the mean square 

displacement [17]. 

Most PT frameworks consist of detecEon, linking, and filtering stages [18]. The detecEon 

stage generally uses a Gaussian filter to filter and normalize an image, thus revealing local maxima 

that correspond to the centroids of spherical objects of a certain diameter. Many strategies have 

been developed to improve upon this general detecEon method [19, 20], and the most state of 

the art detecEon algorithms use CNNs to improve parEcle recogniEon [21-23]. The linking stage 

consists of connecEng the detected bright spots across mulEple frames in Eme to form the most 

probable trajectory for each parEcle, and is generally where most PT algorithms differ from each 

other. For linking of fast and dense parEcles, TrackMate (TM) [24] has been shown to be one of 
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the best performing PT algorithms [18]. However, TM is also slow, and it may take significant 

domain knowledge and experimentaEon to achieve accurate tracking results. Unlike detecEon, 

very few DL-based methods have been developed for the linking stage. The only algorithm that 

has been presented as an end-to-end DL-based framework for linking parEcle trajectories is 

MAGIK [25], which uses a graph neural network to capture the spaEotemporal relaEonships 

present in PT coordinate data. Although this algorithm boasts strong performance for the tested 

scenarios, it is untested in scenarios of high parEcle speed and density, and requires a large 

amount of VRAM (a coordinates shape of 100 frames by 1000 parEcles requires at least more than 

24GB). Furthermore, MAGIK sEll requires another algorithm to perform the detecEon stage, and 

then the coordinate data must be converted to node-edge format for model use (which is not a 

trivial step), meaning it does not improve the ease, speed, or accuracy of the overall parEcle 

tracking process. MAGIK can also be thought of as one of the few models that bridge the gap 

between the fields of parEcle tracking and object tracking. Object tracking is a mature field within 

the domain of computer vision that uses CNNs and vision transformers (VTs) to primarily track 

people and cars [26, 27]. Although object tracking methods are robust in their task-relevant 

performance, few have been trained to track the kinds of objects generally found in parEcle 

tracking experiments. 

To bridge the gap between the parEcle tracking and object tracking domains and improve 

upon the extracEon of moEon staEsEcs from PT data, we propose DeepTrackStat (DTS), a novel 

end-to-end DL-based framework. Specifically, our model offers the ability to predict speed, 

velocity (𝑉𝑥 and 𝑉𝑦) and turn angle distribuEons from a raw image sequence input. DTS is 

designed to be as general as possible, meaning it can accurately predict staEsEcs from a variety of 

parEcle shapes, sizes, brightness, density, speed, and SNR, and a variety of trajectory moEon types 
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such as dispersive, straight, and Brownian. DTS is a two-stage system that consists of a speed 

classifier (SC) and staEsEcs-specific models (SSMs). An input image sequence is first classified 

according to mean speed, then based on this classificaEon, different ensembles of models are 

used to generate the final predicEons for each set of staEsEcs. We show that our proposed class-

based ensembling method largely outperforms a simple ensembling method and mulEple classical 

PT algorithms. Furthermore, our method significantly outperforms three popular classical PT 

algorithms and slightly outperforms TM (a SOTA classical algorithm) over the whole test set, and 

it significantly outperforms TM when only analyzing videos with high-speed parEcles. Finally, we 

find that DTS can offer significant Eme savings for the extracEon of moEon staEsEcs compared to 

classical PT algorithms as it’s measured to be around 6x faster than TM. 

The work presented in the chapter is an enhanced version of the in-review arEcle: 

“Berghouse, M. & Parashar, R. DeepTrackStat: an End-to-End Deep Learning Framework for 

ExtracEon of MoEon StaEsEcs from Videos of ParEcles. Engineering ApplicaDons of ArDficial 

Intelligence. 2024.” This chapter adds to the work currently in review by exploring connecEons 

with chapters 2 and 3. 

 

4.3 Data and methods 

4.3.1 Simulated data 

DTS was developed with the goal of extracEng moEon staEsEcs from a wide range of videos of 

parEcles. One of the challenges of this task is that there are no common benchmarks that currently 

exist for the specific task of measuring parEcle moEon extracEon capabiliEes. Thus, we developed 

a novel dataset containing a wide variety of parEcle tracking cases to properly test DTS. To create 

a highly general model, we generated over 2000 simulaEons of moving parEcles that were used 
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for training. All simulaEons were 40 frames long, 2000 by 2000 pixels, and 1 channel (grayscale). 

The simulaEons differed in image and moEon properEes to train the model on a wide variety of 

spaEotemporal condiEons. Samples of the types of imagery and the distribuEons of moEon 

staEsEcs generated from our simulaEons can be seen in Figure 1. The image properEes we varied 

were parEcle shape, size, density, seeding locaEon, brightness, and signal to noise raEo (SNR). To 

change the SNR of the simulaEons, we used varying combinaEons of Gaussian, speckled, and salt 

and pepper noise. The moEon properEes we varied were parEcle speeds and pathlines. The 

pathlines were either generated randomly (to represent Brownian moEon) or from flow fields 

representaEve of flow in porous media, straight advecEve flow, or Poiseuille flow. The porous 

media pathlines were largely generated from flow fields of heterogeneous geometries (created 

both in OpenFOAM [28] and via the Lakce Boltzman Method). A small percentage of the 

simulated data represents that of the experimental microfluidic geometry used in chapter 2 

(chapter 2, Fig. 1c). This type of homogeneous geometry has been used for parEcle tracking 

studies in the fields of bacterial moElity and determinisEc lateral displacement [2, 29]. Likewise, 

Brownian moEon, and Poiseuille and heterogeneous porous media flows represent a large range 

of the moEon observed in the body of cell microscopy data. Thus, our image and parEcle moEon 

varieEes aim to capture the most commonly encountered types of video data for both 

microfluidics and general microscopy experiments. The simulated training and tesEng set don’t 

significantly differ. Different parameters (parEcle speed, density, SNR, shape and seeding locaEon) 

were used to generate the tesEng simulaEons than the training simulaEons, but the range of 

distribuEons of variables from the tesEng simulaEons generally falls within the range of 

distribuEons of variables from the training simulaEons (Fig. 1). In an effort to display the 
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robustness of DTS, the simulated test set aims to replicate most of the variaEon in the simulated 

training set. 

 

Figure 1. Images and mo3on sta3s3c distribu3ons for the training, simulated test, and experimental test 
data. The images are grayscale (1 channel) and are presented here as false-color images to highlight 
differences in brightness. The wide variety of images (in terms of par3cle density, shape, size, and image 
noise) illustrate the range of inputs that DTS is able to extract accurate predic3ons from. The blue 
distribu3on is the mean of the respec3ve set (training, simulated tes3ng, experimental tes3ng), the orange 
is the mean minus one standard devia3on, and the green is the mean plus one standard devia3on. The grey 
distribu3ons show the full range of variability for the respec3ve set. The distribu3ons for the simulated and 
experimental test datasets are mostly captured in the training dataset. 
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The aim of DTS is to predict speed, velocity component, and turn angle distribuEons 

directly from videos of moving parEcles. We chose to focus on the predicEon of these moEon 

staEsEcs because they are important baseline measurements to understand the advecEve-

diffusive transport of parEcles such as colloids and bacteria. However, we believe that frameworks 

like DTS can be extended to other staEsEcs, so our work also serves as a proof of concept for 

researchers who may be looking for more task-relevant staEsEcs such as dispersion coefficients or 

mean square displacements. For speed, we predict the magnitude of the ensemble velocity of the 

parEcles in pixels per frame as 𝑆 = a(/&23A/&)!J(b&23Ab&)!

∆#
 , where 𝑡 represents Eme (in frames) and 

Δ𝑡 = 1. For velocity, we predict the ensemble x and y velocity components (𝑉𝑥 and 𝑉𝑦) in pixels 

per frame. For turn angle, we predict the relaEve change in direcEon of the ensemble of parEcles 

between two successive frames as 𝛼# = 𝑡𝑎𝑛A7 hb&2!Ab&23
/&2!A/&23

i − 𝑡𝑎𝑛A7 hb&23Ab&
/&23A/&

i. Low average turn 

angle corresponds to parEcles that primarily move straight, and a high average turn angle 

corresponds to parEcles that have a high probability of changing direcEons between frames. One 

of the primary moEvaEons behind this work lies in the results presented in chapter 3, which 

indicate a general inability for current state-of-the-art (SOTA) parEcle tracking algorithms to 

accurately high-speed parEcles. Thus, many of the simulaEons that were generated for training 

and tesEng have max speeds greater than 200 px/frame (Fig. 1), which is about twice the speed 

(in px/frame) of the fastest experimental data from chapter 2. 

4.3.2 Experimental data 

In addiEon to our simulated imagery/trajectories, we also test the performance of DTS on 

experimental videos. These videos are from microfluidics experiments of moEle bacteria in porous 

and open media. Specifically, we use videos of Acidovorax [30], Geobacter [31], Paenibacillus [32], 
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and Shewanella [33] moving through structures with varying levels of porosity (𝜙 = 0, 𝜙 = 0.42, 

and 𝜙 = 0.6) and at varying flow rates (0, 1, and 5 𝜇𝑙∕ℎ). Nine out of twenty-three of these 

experimental videos were also used in chapter 2 to analyze microbial moElity. The other 14 videos 

come from various related experiments, meaning that they also have a high degree of similarity 

(in terms of image and parEcle moEon properEes) with the experimental videos from chapter 2. 

Because this is an experimental dataset, there is no ground truth. Thus, we use the results from 

TM as a relaEve ground truth to gauge the performance of DTS. The experimental videos range 

from 200 to 3000 frames, and are 2048 by 2048 pixels. 

4.3.3 Model development 

We present a novel end-to-end framework that consists of two stages: the speed classifier 

(SC) and the staEsEcs- specific models (SSMs). Previous studies have presented similar class-based 

ensemble methods for various tasks [34, 35, 36]. However, our model is novel in its combinaEon 

of architectures used, the use of a speed classifier to improve predicEons of moEon staEsEcs, and 

the task of extracEng informaEon from videos of moving parEcles. The framework splits an input 

video into 40-frame chunks and averages the moEon staEsEcs predicEons across all chunks, 

meaning the model can process any grayscale video input with at least 40 frames. The SC uses an 

ensemble of convoluEonal neural networks (CNNs) and vision transformers (ViTs) to classify the 

input into one of five classes based on speed. All models used in the ensemble can be seen in the 

publicly-available tesEng script, but the models that carry the most weight in the SC ensemble are 

VoloD1-384 [37], Pyramid Vision Transformer V2-b1 [38], RegnetX-032 [39], and VoloD3-448 [37], 

which were chosen for their high single-model performance. CNNs are well known to be able to 

capture spaEal features within the images of a video [40], but may have trouble learning the 

temporal relaEonships in the data [41]. Thus, we also use ViTs, which are especially suited to learn 
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features in sequences of images [42], and have shown high performance on video classificaEon 

tasks [43]. The speed classifier tries to predict ranges of mean parEcle speeds. Specifically, class 1 

corresponds to a mean speed of 0-2 pixels/frame, class 2 is 2-5 pixels/frame, class 3 is 5-10 

pixels/frame, class 4 is 10-18 pixels/frame, and class 5 corresponds to a mean parEcle speed of 

greater than 18 pixels/frame. 

The second stage of the DTS framework, the SSMs, consists of a variety of ensemble 

models for each staEsEc and each class. The specific models used in each ensemble were 

determined by their single-model performance. DTS outputs a sorted 500-length vector of 

probable values for parEcle speeds, turn angles, and velocity components (𝑉𝑥 and 𝑉𝑦). Through 

this framework, the speed classifier has a large impact on the final results, with each specific SSM 

only slighlty shiSing the value of the outputs. The ensemble weights for the SC and SSMs were 

determined through calibraEon of 50% of the simulated test data. In addiEon to calibraEon, we 

used simple boolean logic to improve DTS’ performance on Brownian trajectories and trajectories 

that are relaEvely straight, but this feature has to be manually specified by the user. If the user 

knows a parEcular video contains primarily Brownian trajectories and sets this flag, then DTS will 

ensure that the output for 𝑉𝑥 has a mean value of 0. Likewise, if the user observes that their video 

contains a large majority of parEcles that move straight, DTS will use a different ensemble for the 

turn angle distribuEon. Although DTS sEll has comparable performance to TrackMate without the 

use of these special flags, their use improves results for the specific cases of Brownian and straight 

parEcles. For all results discussed in this chapter, both flags were used to improve performance 

for these trajectory types. 

The speed SSM primarily consists of a 4xVoloD1-224 patch model, VoloD3-448, VoloD1-

384, and VoloD2-384. The patch model takes in a downsampled video input (448x448 pixels) and 
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splits it into four 224x224 patches. Each of these patches is then fed into a VoloD1-224 model with 

an output size of [B,500]. The outputs from each VoloD1-224 model are then concatenated 

and fed into a fully connected layer to get the final desired output shape of 500. For all other 

models, the final classificaEon layer is simply replaced to get an output shape of 500. ASer each 

model generates its outputs, the class-based ensemble weights are used to generate the final 

model outputs. The exact models and ensemble weights used in each stage are given in 

Supplementary Figure 7. All base models were constructed with the PyTorch Image Models 

(TIMM) repository [44], meaning the final classificaEon layer was changed via the "num_classes" 

flag. All models used the default pre-trained weights from TIMM (model-specific, but mostly 

ImageNet [45]). The turn angle, 𝑉𝑥, and 𝑉𝑦 SSMs are constructed from similar ensembles, the 

details of which can be viewed in the code or Supplementary Figure 7. 

4.3.4 Training and testing process 

We used 1923 simulaEons for training and 481 simulaEons for validaEon, which was used to 

reduce overfikng during training via early stopping. The simulated test set contains 43 simulaEons 

and the experimental test set contains 23 pairs of images and trajectories. For TIMM models, the 

set dropout rate applies increasingly larger amounts of dropout in the transiEon layers of the 

model, with the final transiEon layer having the set amount of dropout. All patch-based models 

were trained with dropout of 0.3, and all other models were trained with dropout of 0.4. All 

models were trained with the AdamW opEmizer at a learning rate (lr) of between 1.2e-5 and 2e-

4. The speed classifier was trained with an lr of 2e-4, the speed SSM was trained with an lr of 1.2e-

5, the 𝑉𝑦 SSM was trained with an lr of 1e-4, the 𝑉𝑥 SSM was trained with an lr of 1.2e-4, and the 

𝛼 SSM was trained with an lr of 6e-5. Hyperparameter tuning (dropout, learning rate, and number 

of classes) was done in a two step process. We tuned the hyperparameters automaEcally via 
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Optuna [46] for a few models for each staEsEc, then used the best range of learning rates to 

manually test a few sets of hyperparameters for each of the other models. All speed classifier 

 

 

Figure 2: Overall framework for the proposed model (DTS). The model accepts a grayscale video as input (T 
must be 40, W and H must be equal) and first send it through the speed classifier (SC), which is an ensemble 
model used to classify the video of par3cles into 5 speed categories. The input is then sequen3ally sent to 
sta3s3cs-specific models (SSMs), which are each individually trained for their specific predic3on task. Based 
on the output of the speed classifier, each SSM uses a different condi3onal ensemble model to generate the 
predic3ons. The outputs of DTS are the raw 500-length vectors of values for each sta3s3c, and the respec3ve 
distribu3on for each sta3s3c. 
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trained for 150 epochs. All “224” (i.e. models that take in an input of 224x224) models were 

trained with a batch size of 32, all “384” models were trained with a batch size of 16, and all 448 

models were trained with a batch size of 8. All training and tesEng for DTS, and all PT experiments, 

were performed on a CUDA-capable computer with an Nvidia 4090 GPU, Intel i9-14900KF CPU, 

and 96GB of RAM. 

In this chapter we compare the performance of DTS to four other algorithms (TrackMate, 

Trackpy [47], TracTrac [48], and LapTrack [49]). For TrackMate, we used the Kalman filter linking 

algorithm for trajectories with directed moEon and the LAP linking algorithm for trajectories with 

Brownian moEon. Aggregate moEon staEsEcs for each classical PT algorithm (and the ground 

truth) were computed by ensemble averaging methods over all trajectories and frames. 

EssenEally, each tracker outputs a csv of the trajectories that are sorted and looped through to 

calculate ensemble staEsEcs. StaEsEcs for DTS are calculated as the ensemble of all outputs from 

a single video. 

Each model was calibrated to achieve the best results on the tesEng set. For TM, Trackpy, 

TracTrac and LapTrack, calibraEon was performed through a cycle of visual and staEsEcal analysis 

to inform the adjustment of tracking parameters. For DTS, calibraEon entailed adjusEng the class-

based ensemble weights to achieve the best possible results on 50% of the tesEng data. The point 

of the calibraEon step is to simulate the scenario of using DTS to extract moEon staEsEcs from 

mulEple videos. Given the rigorous tesEng in scienEfic literature that classical PT algorithms have 

gone through, it is reasonable to first use a classical PT framework (such as TM) to produce moEon 

staEsEcs in order to verify the accuracy of DTS for a parEcular dataset. If there are any significant 

discrepancies between DTS and TM, the ensemble weights of DTS can then be adjusted to match 

TM (or any other SOTA tracking algorithm), ensuring accurate staEsEcs for the parEcular data 
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being analyzed. In addiEon to our calibrated results, we also provide uncalibrated results for DTS. 

In the uncalibrated version of DTS, the ensemble weights were determined through opEmizing 

predicEons of the validaEon set. 

 

4.4 Results and discussion 

4.4.1 Decreased run time 

One of the primary advantages of DTS over classical PT algorithms (such as TM) is the reduced 

computaEon Eme for generaEon of moEon staEsEcs. ParEcle trajectory analysis oSen requires 

many imaging trials at high resoluEon, meaning the Eme required to extract moEon staEsEcs is an 

important concern. For one of our experimental videos with dense parEcles that contains 2480 

frames, TM takes 2.5 minutes for loading the images into ImageJ [50], 5 minutes to perform the 

detecEon step, 4 minutes to perform the linking step, 0.5 minutes to filter and export the 

trajectories, and 0.5 minutes to calculate the staEsEcs, which means the TM framework in total 

takes 12.5 minutes to extract staEsEcs from the video data. This is assuming that OOM errors 

aren’t encountered (a 2480 frame video of 2048x2048 resoluEon with >1000 parEcles in each 

frame may cause TM to crash) and that the tracking parameters used on the first try are opEmal, 

which is unlikely for anyone besides an expert in the field. Even for someone experienced with PT 

codes, a 2480 frame video with over 1000 parEcles per frame will likely require 30 minutes to get 

good results. In stark contrast, DTS only takes 2 minutes to make its predicEons for the same video, 

and requires significantly less domain knowledge to get accurate predicEons of moEon staEsEcs. 

AddiEonally, DTS always takes two minutes for a 2480 frame video of 2048x2048 resoluEon, 

whereas the Eme required to generate staEsEcs via classical PT methods significantly depends on 
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the number of trajectories. For videos with very few parEcles, DTS may not save much Eme, but 

for videos with a large number of parEcles (>1000), DTS will save a significant amount of Eme. 

4.4.2 Ablation experiments 

In order to show the benefit of our proposed model structure, we performed ablaEon experiments 

for each staEsEc. We report the mean average error (MAE) plus or minus the standard deviaEon 

of the mean value of each staEsEc across all simulated test data for the four best sets of single 

models, a simple ensemble of the best models, a single model that outputs all four variables at 

once, and our proposed class-based model (Table 1). The set of single models represent the top 4 

single models for each variable. For example, MS-1 gives the results for a VoloD3-448 model used 

to calculate speed, a VoloD1-384 model used to calculate 𝑉𝑥, a VoloD4-448 model used to 

calculate 𝑉𝑦, and a VoloD3-448 model used to calculate 𝛼. In the 4-Var model, there are four 

separate VoloD1-224 models that generate the feature maps for each variable, then these four 

feature maps are concatenated and passed through a linear layer to generate the final output of 

shape [B, 500, 4]. In this case, we see performance is dramaEcally worse than that of the set of 

single models, the simple ensemble and DTS, which indicates the need to develop an ensemble of 

single models. 

For all staEsEcs besides 𝑉𝑥, we find that the class-based model largely outperforms the 

best sets of single models. Furthermore, DTS significantly (p < 0.05) outperforms a simple 

ensemble of the best single models for the speed and turn angle predicEon tasks. In the case of 

𝑉𝑥, although the MAE is greater for DTS than for model 1, other metrics (RMSE and W1) indicate 

that DTS has a beZer overall fit to the ground truth data. Thus, we illustrate that a class-based 

ensembling method can lead to significant performance increases for the task of predicEng moEon 
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Table 1. Abla3on experiments on the simulated test set (n=43 samples). Scores are reported as the MAE for 
all samples in the test set plus or minus one standard devia3on of the MAE between all samples of the test 
set. The metrics are non-nega3ve with a large posi3ve skew that oPen results in a standard devia3on greater 
than the mean. For all proceeding tables, results are reported as the mean error with a 10th-90th range to 
clear any poten3al confusion. Here we give the results for the top 4 sets of single models, a simple ensemble 
of MS-1, MS-2, and MS-3, and a 4-var model that uses a single model (VoloD1-384) to predict all sta3s3cs 
at once, and DTS (the proposed framework). The best performing single models for speed are VoloD3-448 
(MS-1 & MS-3) and the 4xVoloD1-224 patch model (MS-2 & MS-4). For 𝑉𝑥 the best performing models are 
VoloD1-384 (MS-1), RegnetX-016 (MS-2), VoloD3-448 (MS-3), and RegnetX-032 (MS-4). For 𝑉𝑦 the best 
performing models are VoloD4-448 (MS-1), VoloD3-448 (MS-2), VoloD1-384 (MS-3) and VoloD1-224 (MS-
4). For turn angle the best performing models are VoloD3-448 (MS-1 & MS-3) and VoloD1-384 (MS-2 & MS-
4). The class-based model significantly (p < 0.05) outperforms the simple ensemble for the speed predic3ons 
and slightly outperforms the ensemble in all other metrics. 

Stat MS-1 MS-2 MS-3 MS-4 Ensemble 4-Var Model DTS 

𝑆 3.7 ± 5.0 4.2 ± 6.1 4.3 ± 6.0 9.7 ± 15 5.2 ± 7.8 10 ± 12 𝟐.𝟖 ± 𝟑.𝟑 

𝑉𝑥 5.7 ± 4.6 5.8 ± 4.8 6.0 ± 5.5 6.8 ± 6.4 5.7 ± 4.8 9.9 ± 12 5.1 ± 9.0 

𝑉𝑦 0.8 ± 0.7 0.9 ± 0.6 0.9 ± 0.9 1.0 ± 0.9 0.8 ± 0.8 6.5 ± 7.2 0.5 ± 0.5 

𝛼 3.4 ± 2.9 3.5 ± 2.7 3.7 ± 3.9 3.9 ± 4.1 3.0 ± 2.7 5.4 ± 5.3 2.5 ± 2.1 

 

staEsEcs from videos of parEcles. Furthermore, the class-based method contains a large number 

of parameters that can be manually fine- tuned (such as the Brownian and straight moEon flags, 

and easily modifiable weights for the SC and SSMs), which allows for more precise calibraEon 

depending on the range of videos that need to be analyzed. 

The full DTS framework has around 2 billion (1,994,005,238) parameters. The single 

models used in this study have between 8 and 200 million parameters. Using all the best single 

models, the full predicEon framework would have around 330 million parameters. The ensemble 

framework uses 3 models for the predicEon of each staEsEc, which gives it around 1 billion 

parameters. The 4-var model is just a single VoloD1-384 model for all staEsEcs, so this would only 

have 26 million parameters. Although the 4-Var model performs significantly worse than all others, 
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this framework could be advantageous for situaEons where rapid predicEons and low 

computaEonal cost are required or preferred over accuracy. 

4.4.3 Simulated test set 

To ensure that DTS can handle a wide variety of simulated data, we included test simulaEons that 

had large variaEons in image and trajectory properEes (Fig. 1). Our results indicate that the 

performance of DTS can match that of TM across this wide variety of simulaEons (Table 2). 

Specifically, DTS significantly outperforms TM in 2 out of 3 of the speed and angle metrics. 

Furthermore, DTS vastly outperforms other well-known PT methods such as Trackpy (Table 3), 

TracTrac (Table 4), and Laptrack (Table 5). In addiEon, we tried to compare the performance of DTS 

with a SOTA opEcal flow method [51], but determined that the model would require fine-tuning 

to perform the desired task (Supplementary Figure 8). 

Complementary to our calibrated results for DTS, we also present results for an 

uncalibrated framework (Table 6). While the uncalibrated framework doesn’t perform as well as 

the calibrated framework (Table 5), it does indicate that DTS can be used out-of-the-box to predict 

moEon staEsEcs with much greater accuracy than the calibrated predicEons of Trackpy (Table 2), 

TracTrac (Table 3), and Laptrack (Table 4), and slightly beZer accuracy than the calibrated 

predicEons of TrackMate (Table 5). AddiEonally, these results show that the class-based 

framework has a clear advantage over simple ensembling for speed and angle predicEons (Table 

1). 

DTS shows especially strong performance for simulaEons with high parEcle speeds (Table 

7). We define high-speed simulaEons as having a mean ensemble speed of greater than 25 

pixels/frame. For our 12 test simulaEons that meet this criteria, DTS dramaEcally outperforms TM, 

showing improvement in every metric for the speed, 𝑉𝑥, and turn angle staEsEcs. Once again, the 
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Figure 3: Impact on turn angle predic3ons of using the "straight trajectories flag" for a simula3on of straight-
moving par3cles. (a) Predic3ons with the flag on. (b) Predic3ons with the flag off. DTS is unable to accurately 
predict the turn angle distribu3on without manual help, illustra3ng the benefit of the flag, and the need to 
visually inspect the inputs before using DTS. 
 

Table 2. Results from the simulated test set (n=43 samples) for each sta3s3c comparing DTS and TM. The 
mean of each sta3s3c is given along with the 90th-10th percen3le error range. For both frameworks, we 
give the MAE, RMSE, and 1-Wasserstein distance (W1) for each sta3s3c (rela3ve to the ground truth). 
Sta3s3cally significantly be`er performances are bolded. 

 DeepTrackStat TrackMate 

Stat MAE RMSE W1 MAE RMSE W1 

Speed 𝟐.𝟖𝟎	

 [.𝟏𝟏𝟔, 𝟕.𝟏𝟖] 

𝟓.𝟑𝟕		

[.𝟖𝟑𝟗, 𝟏𝟏.𝟔] 

.026  

[.0005, .082] 

7.41  

[.030, 28.0] 

11.1 

[.610, 31.8] 

.016  

[.0015, .053] 

𝑉𝑥 5.05 

 [.047, 15.7] 

8.48 

[.828, 20.6] 

.076 

 [.0013, .113] 

7.95 

[.004, .342] 

12.0  

[.712, 34.2] 

.087  

[.0010, .154] 

𝑉𝑦 .547 

 [.012, 1.27] 

4.63 

[.609, 12.9] 

.026  

[.0005, .108] 

.𝟐𝟗𝟏	

 [.𝟎𝟎𝟓, .𝟖𝟒𝟔] 

4.95 

[.231, 11.9] 

.021 

 [.0004, .090] 

𝛼 𝟐.𝟓𝟏  

[.𝟓𝟐𝟗, 𝟓.𝟐𝟑] 

𝟓.𝟒𝟏  

[𝟏.𝟓𝟕, 𝟗.𝟔𝟑] 

.002  

[.00002, .002] 

5.49  

[.987, 9.59] 

10.5  

[3.90, 20.8] 

.002 

[.00017, .004] 

 

a. b.
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speed and angle predicEons stand out, with both the MAE and RMSE showing a staEsEcally 

significant improvement from TM. For tradiEonal parEcle tracking methods (ie not based in deep 

learning methods) such as TM, the quality of the extracted trajectories is mainly determined by 

parEcle spacing displacement raEo (PSDR), which is the raEo of the average spacing between any 

two parEcles and the average speed of a parEcle. Since TM, and most other classical PT methods, 

are all roughly based on some kind of nearest neighbors approach, the lower the PSDR, the harder 

it is for them to accurately track the parEcles. At high parEcle speeds, the PSDR is low, so TM is 

unable to extract accurate trajectories. DTS, since it is not based on any kind of nearest neighbors 

algorithm and does not actually perform tracking, doesn’t suffer from this issue. For speed, The 

MAE for DTS is about 5x less than that of TM, showing that DTS has a clear applicaEon for 

improving the accuracy of speed predicEons for videos of high-speed parEcles. 

In addiEon to our numerical performance comparison of DTS and TM, we also present a 

graphical performance comparison of the distribuEons of the simulated and experimental test 

sets (Fig. 4) for each staEsEc. The distribuEons obtained from the simulated test sets (Figs. 4a, 4b, 

4c, and 4d) show that, on average, the distribuEon shapes obtained from DTS closely resemble 

the ground truth trajectories. Furthermore, for 𝑉𝑥, although the fit between distribuEons (as 

measured by W1) is essenEally equal for TM and DTS (Table 2), the predicEons by DTS are much 

more accurate for the high-speed simulaEons (Table 7). In addiEon, when looking at the 

distribuEon for all data, the predicEons from DTS show much beZer alignment with the ground 

truth than TM does for the 𝑉𝑥	statistic. This importantly shows that DTS has an equal chance of 

correctly predicEng the true 𝑉𝑥 distribuEon for individual videos, but a higher chance of predicEng 

the true 𝑉𝑥 distribuEon for a group of videos. 

 



 

 
163 

Table 3. Results from the simulated test set (n=43 samples) for each sta3s3c for Trackpy. The mean of each 
sta3s3c is given along with the 90th-10th percen3le error range. The performance of Trackpy is considerably 
worse than that of DTS or TM. 

Stat MAE RMSE W1 

𝑆 8.44 [.306, 26.0] 10.8 [.508, 30.4] .038 [.0008, .142] 

𝑉𝑥 8.87 [.392, 27.2] 11.6 [.662, 32.9] .032 [.0015, .049] 

𝑉𝑦 3.42 [.174, 13.5] 4.87 [.364, 16.9] .037 [.0002, .172] 

𝛼 8.42 [1.06, 20.4] 13.2 [1.77, 28.8] .003 [.0002, .005] 

 

Table 4. Results from the simulated test set (n=43 samples) for each sta3s3c for TracTrac. The mean of each 
sta3s3c is given along with the 90th-10th percen3le error range. TracTrac is the lowest-performing PT 
method that was tested in this study. 

Stat MAE RMSE W1 

𝑆 12.0 [.029, 32.2] 14.2 [.068, 32.9] .032 [.0017, .046] 

𝑉𝑥 12.8 [.045, 39.9] 14.8 [.156, 45.2] .026 [.0022, .031] 

𝑉𝑦 4.06 [.023, 13.0] 5.32 [.179, 16.4] .032 [.0015, .075] 

𝛼 14.5 [.548, 42.3] 14.5 [.548, 42.3] .002 [.00007, .006] 

 

Table 5. Results from the simulated test set (n=43 samples) for each sta3s3c for Laptrack. The mean of each 
sta3s3c is given along with the 90th-10th percen3le error range. The performance of Laptrack is 
considerably worse than that of DTS or TM. 

Stat MAE RMSE W1 

𝑆 8.14 [.533, 22.3] 11.1 [1.33, 25.7] .035 [.0006, .085] 

𝑉𝑥 8.69 [.584, 22.7] 12.5 [3.20, 29.6] .032 [.0015, .063] 

𝑉𝑦 3.63 [.500, 10.4] 6.29 [1.19, 13.3] .041 [.0006, .171] 

𝛼 10.4 [.964, 20.1] 15.5 [2.23, 29.0] .003 [.0002, .005] 
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Table 6. Uncalibrated results from the simulated test set (n=43 samples) for each sta3s3c for DTS. For these 
results, the ensemble weights and chosen models for DTS were determined via performance on the 
valida3on set, meaning these represent the general performance capabili3es of DTS for completely unseen 
data. While the results aren’t as strong as the calibrated ones, the errors in speed and angle predic3on are 
s3ll less than any other method tested in this chapter. 

Stat MAE RMSE W1 

𝑆 3.23 [.25, 7.7] 5.32 [.30, 12.1] .021 [.00046, .039] 

𝑉𝑥 5.20 [.03, 20.2] 8.62 [.91, 22.4] .026 [.00104, .077] 

𝑉𝑦 .627 [.03, 1.8] 4.25 [.39, 10.4] .025 [.00153, .081] 

𝛼 2.58 [.53, 5.2] 5.35 [1.3, 9.81] .002 [.00002, .002] 

 

4.4.4 Experimental test set 

The results from the experimental test set (Table 8) further indicate DTS’ ability to accurately 

extract moEon staEsEcs from videos of moving parEcles. DTS shows strong alignment with TM for 

all staEsEcs. The values are close enough that, given DTS’ strong performance on simulated test 

set, it’s unclear which distribuEons are more accurate. For example, the high speeds predicted by 

TM (Fig. 4e), such as up to 1000 pixels/frame, are highly unlikely for a video of bacteria in porous 

media flows at 2048x2048 resoluEon. This would mean that a parEcle could move across the 

camera’s field of view in only two frames, which is not possible for the max flow speed (up to 

800𝜇𝑚∕𝑠), frame rate (10 FPS), image magnificaEon (0.325 px/𝜇𝑚) of our specific experiments. 

A quick calculaEon shows the max speed a parEcle should be able to achieve in pixels/frame is 

about 246, meaning that DTS’ esEmate of a max speed of about 350 pixels/frame is in all likelihood 

more accurate than TM’s esEmate of 1000 pixels/frame. For the turn angle staEsEc derived from 
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Table 7. Average results from a high-speed subset (n=12 samples) of the simulated test data. Sta3s3cally 
significantly be`er performances are bolded. In the case of high-speed PT data, DTS performs be`er than 
TM in every metric. 

 DeepTrackStat TrackMate 

Stat MAE RMSE W1 MAE RMSE W1 

Speed 𝟒.𝟑𝟑  

[𝟏.𝟐𝟓, 𝟗.𝟑𝟓] 

𝟕.𝟗𝟑  

[𝟐.𝟐𝟏, 𝟏𝟓.𝟓] 

.002  

[.0003, .003] 

22.8  

[2.36, 46.4] 

27.5  

[9.31, 51.9] 

.004  

[.002, .006] 

𝑉𝑥 12.9  

[.718, 35.6] 

18.6  

[7.31, 43.4] 

.050  

[.0060, .027] 

24.7  

[2.40, 51.9] 

28.9  

[8.58, 56.4] 

.146  

[.0540, .161] 

𝑉𝑦 .882  

[.249, 1.38] 

8.70  

[3.06, 16.3] 

.004  

[.0003, .004] 

.775  

[.190, 1.41] 

9.51  

[3.46, 17.2] 

.003  

[.0004, .009] 

𝛼 𝟐.𝟖𝟓  

[.𝟒𝟎𝟎, 𝟓.𝟑𝟔] 

𝟓.𝟎𝟑  

[𝟏.𝟐𝟒, 𝟕.𝟖𝟖] 

.002  

[.00005, .002] 

5.60  

[2.71, 7.68] 

13.5  

[5.35, 20.2] 

.003  

[.0006, .002] 

 

 

 

Figure 4: Distribu3on comparisons for simulated (a-d) and experimental (e-h) test sets for speed (a & e), 
turn angle (b & f), 𝑉𝑥 (c & g), and 𝑉𝑦 (d & h). For the simulated test set, we compare DTS and TM to the 
ground truth. For the experimental test set, we only compare DTS with TM, since there is no ground truth. 
Each distribu3on is obtained from a concatenated list of all values (from each individual simula3on) for the 
respec3ve sta3s3c. 
 

Simulated Experimental

a. b. e. f.

g. h.d.c.
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Table 8. Average results from the experimental test set (n=23 samples) for each sta3s3c. Since there is no 
ground truth data for the experimental data, errors for DTS are calculated rela3ve to TM. 

Stat MAE RMSE W1 

𝑆 1.98 [.312, 4.19] 5.36 [2.17, 11.8] .026 [.006, .053] 

𝑉𝑥 1.26 [.072, 2.11] 2.29 [.757, 4.38] .026 [.0056, .058] 

𝑉𝑦 .298 [.008, .793] 1.89 [.407, 2.95] .033 [.002, .073] 

𝛼 7.05 [.724, 14.1] 10.8 [4.12, 17.1] .001 [.00006, .002] 

 

the average experimental tracks, DTS and TM have nearly idenEcal exponenEal distribuEons (Fig. 

4f). The 𝑉𝑥	(Fig.	4g)	and	𝑉y	distribuEons (Fig. 4h) show DTS accurately matches the mean of the 

TM output, but has a more narrow distribuEon.  

 To further explore the use of DTS on experimental data, we compare the turn angle 

distribuEons extracted via DTS with the turn angle distribuEons calculated from the PT-derived 

trajectories for videos of Geobacter and Paenibacillus in a 𝜙 = 0.42 geometry for Q = 1 𝜇L/h and 

Q = 5 𝜇L/h (Fig. 5). These videos represent samples of the videos used in chapter 2 to invesEgate 

microbial transport at varying flow rates for bacterial of different moElity types. Recalling the 

informaEon from chapter 2 of this dissertaEon, Geobacter have twitching moElity, whereas 

Paenibacillus have peritrichous flagella. For these tests, we recalibrated DTS by opEmizing the 

class-based ensemble for performance on a separate set of videos for Geobacter and Paenibacillus 

at Q = 1 𝜇L/h.  

For the videos of Geobacter transport at Q = 5 𝜇L/h and Paenibacillus transport at Q = 1 

𝜇L/h, we see a degree of agreement between DTS and TM. For Geobacter at Q = 1 𝜇L/h, DTS 

predicts a smaller amount of turning (i.e., lower mean turn angle) than TM does, although the 

predicEons are within the same ballpark relaEve to the other bacteria/flow rate combinaEons. For 
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Paenibacillus at Q = 5 𝜇L/h, DTS predicts a larger amount of turning than TM does. This 

combinaEon of over and underpredicEon by DTS results in slightly different conclusions than if 

one were to use TM. As discussed in chapter 2, a turn angle more closely centered around 0 (lower 

absolute mean) implies straight trajectories, which are more likely to occur with the twitching 

species due to their moElity being dominated by advecEon. We observe these trends looking at  

 

 
Figure 5. Turn angle distribu3ons for Geobacter and Paenibacillus at Q = 5 𝜇L/h and Q = 5 𝜇L/h for DTS and 
TM. These distribu3ons represent a subset of the results presented in chapter 2 to inves3gate bacterial 
transport in porous media. The results from DTS generally lead to the same conclusions about transport as 
the results from TM do. 
 

the results for either DTS or TM, although DTS implies an even greater difference in the turn angles 

between species than TM does. Furthermore, the results from DTS indicate that there is less 

difference between the turn angles of the same species at different flow rates. UlEmately, because 

neither DTS or TM represent the ground truth, we can’t comment on which method is more 

accurate for the experimental data. However, given the similariEes of the conclusions, and the fact 

that there is no theoreEcal reason Paenibacillus should make less turns at Q = 5 𝜇L/h than 
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Geobacter at Q = 1 𝜇L/h, we posit that DTS, especially when calibrated, is accurate enough to 

replace parEcle tracking for the determinaEon of turn angle distribuEons from experimental 

videos of bacteria in microfluidics. 

 

4.5 Conclusions 

We show that our proposed model, DeepTrackStat, achieves SOTA performance at comparaEvely 

rapid speeds for the general task of predicEng speed, 𝑉𝑥, 𝑉𝑦, and turn angle distribuEons for a 

wide variety of parEcle tracking situaEons. Specifically, our model is capable of predicEng these 

moEon staEsEcs for a large range of parEcle, image, and trajectory types (dispersive, Brownian, 

Poiseuille) about 6 Emes faster than via classical parEcle tracking algorithms. Through ablaEon 

experiments we show that our novel class-based ensembling method outperforms a simple 

ensembling method. We then show that DTS outperforms all classical PT algorithms used in this 

study for the predicEon of moEon staEsEcs for our simulated test set, and we confirm the 

applicability of our models to real-world data by showing that the average outputs of DTS are 

comparable to the average outputs produced through TM. Furthermore, we show that the insights 

gained from analysis of turn angle distribuEons extracted by DTS are similar to those gained from 

the analysis of turn angle distribuEons extracted by TM. In addiEon, we highlight DTS’ strong 

performance for the specific task of predicEng staEsEcs from videos of parEcles moving at high 

speeds. In this case, the performance of DTS greatly exceeds that of TM (the top-performing 

classical algorithm). Thus, we present a novel method for extracEon of moEon staEsEcs and apply 

it to videos of parEcles. Although our models are specifically trained for the task of extracEng 

staEsEcs from videos of moving parEcles, our class-based ensembling framework can theoreEcally 
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be extended to extract moEon staEsEcs of any set of objects where the speed of the object is 

significantly correlated with the other moEon staEsEcs to be predicted. 

Although we have shown the robust performance of DTS across a wide variety of image 

and moEon types, there are many limitaEons present in this chapter that primarily revolve around 

scope. First and foremost, we recognize that a more rigorous study would include more simulated 

and experimental test sets. In addiEon, for most of the results DTS was calibrated on 50% of the 

simulated test data, so for parEcles with moEon staEsEcs that greatly fall outside of the training 

or calibraEon range, it is unlikely that DTS will perform well. This can be seen in the case of the 

straight trajectories (Fig. 3) - although DTS was trained on trajectories of similar types, straight-

trajectory simulaEons made up a small percentage the enEre training set. Thus, without the 

addiEon of a manually set flag to indicate that the parEcles are moving straight, DTS is not able to 

make accurate turn angle predicEons. Another primary limitaEon of our work is that we have only 

compared DTS to classical PT algorithms. A more robust study might use fine tuning of SOTA object 

tracking algorithms to more effecEvely combine the domains of parEcle tracking and object 

tracking and determine more opEmal network architectures. Finally, our work is limited in that it 

can only be used to predict four moEon staEsEcs. Rigorous transport studies oSen need more 

staEsEcal evidence to make insigh�ul claims, so our work could be improved by increasing the 

number of staEsEcs DTS can accurately predict. 

We hope that DTS is of pracEcal use to researchers interested in applicaEons of parEcle 

tracking. We have supplied the model weights at hZps://zenodo.org/records/11245477, and all 

data and scripts needed for training and tesEng can be found at 

hZps://github.com/mberghouse/DeepTrackStat. Furthermore, our training data represents one 

of the most comprehensive sets ground-truth parEcle tracking data publicly available on the 

https://zenodo.org/records/11245477
https://github.com/mberghouse/DeepTrackStat
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internet, and we believe researchers will find it useful for the development of even more robust 

applicaEons related to PT. Thus, we hope that our work generally sparks interest within the 

research community about applicaEons of computer vision for parEcle tracking and moEon 

staEsEcs predicEons. Neither of these are solved problems yet, and improving these tasks can 

greatly improve research capabiliEes in the wide variety of fields that make use of them. 
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Chapter 5: Investigation of Feedback Cycles and the Impacts of Speed-
Based Biomass Decay on Biomass Growth and Chromium Reduction in 
the Hyporheic Zone 

 
5.1 Abstract 

Within the hyporheic zone, a complex interplay of abioEc processes dictates the growth condiEons 

of biomass. Given the hyporheic zone’s potenEal role to bioremediate contaminants through 

bioEc and abioEc reducEon, decoding these growth determinants has broader ecological 

significance. In this study, we present a Monte-Carlo-style exploraEon into how varied iniEal 

condiEons influence biomass growth and reducEon of heavy metals using chromium as an 

example. Our modeling approach simulates a two-dimensional, meter scale cross-secEon of the 

hyporheic zone, integraEng heterogeneous permeabiliEes and accurate hyporheic flux, and 

modeling chromium reducEon through Monod kineEcs.  

To effecEvely capture bioclogging dynamics and soil respiraEon, we’ve enhanced the 

reacEve transport model, PFLOTRAN. Our expanded model accounts for biomass decay influenced 

by fluid speed, and the dependency of biomass growth on temperature. We examine the speed-

based biomass decay funcEon by providing a sensiEvity analysis of the impact of different 

parameter values on biomass growth and chromium reducEon. AddiEonally, we conduct a large 

number of simulaEons to offer holisEc insights into microbial growth dynamics through mean 

trend analysis, mean spaEal distribuEon analysis, sensiEvity analysis, PCA and clustering, and 

correlaEon heatmaps. This analysis reveals several insights into the feedback cycles and trends of 

biomass growth in the hyporheic zone under varying hydro-biogeochemical sekngs and shows 

that while abioEc reducEon is generally more dominant than bioEc reducEon, high biomass 

concentraEons give rise to reducEon hotspots. While abioEc reducEon largely determines the 

temporal distribuEon of average chromium concentraEons in the domain,  bioEc reducEon 
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controls the average spaEal distribuEon of chromium in the domain. In summary, this chapter 

contains a theoreEcal model for biomass growth in saturated porous environments, a working 

version of our biomass growth model in PFLOTRAN, and analysis of the feedback cycles and 

variable relaEonships produced through 2D hyporheic zone simulaEons. 

 

5.2 Introduction 

Historically, studies in the hyporheic zone (HZ) have revolved around understanding flow dynamics 

[1, 2, 3], nutrient flux [4, 5, 6], and biofilm growth [7, 8, 9, 10]. Most of the current research on 

biomass growth in the HZ relates to the ecological significance of microbial communiEes [11, 12, 

13, 14], but recent research has also illuminated the impact of biofilms on physical hydrologic 

properEes such as permeability and local flow speed [9, 10, 15, 16]. Specifically, the emergence of 

biofilms, which causes a decrease in permeability known as bioclogging, has been recognized as a 

significant factor affecEng water flow and solute transport [7, 17, 18]. Furthermore, the properEes 

of biofilms such as strength, density and sEckiness (adhesion and cohesion), and variaEons in the 

geometry of the porous media such as grain shape, impact the relaEve changes in permeability 

[17]. The degree of bioclogging is also dependent on flow speed. As speed increases, the increased 

fluid shear causes a breakup of the biofilm which represents a local decrease in biomass 

concentraEon. 

Biomass growth in the HZ can be understood as a complex feedback loop dependent on a 

myriad of individual phenomena. Flow, as an iniEal causal variable in most cases, acts as the 

foundaEon for this feedback loop. It insEgates a flux of temperatures and nutrient concentraEons 

within the hyporheic zone. This flux, in turn, triggers changes in biomass concentraEons. Generally, 

higher nutrient levels and increased temperatures tend to promote growth [19, 20, 21, 22]. 
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However, the relaEonship between temperature and biomass is somewhat nuanced. For instance, 

an upEck in temperature leads to reduced water viscosity, which subsequently results in increased 

flow speeds. Increased fluid speed may bring in nutrient-rich or nutrient-poor water, resulEng in 

changes to the biomass growth within the domain. Furthermore, high shear rates caused by 

increased fluid speed can result in the breaking apart and subsequent transport of biomass. 

However, the coupling of these mulEple phenomena in Darcy-scale remediaEon simulaEons has 

not yet been invesEgated, meaning the exact impact of temperature and other abioEc factors on 

biomass growth in the HZ is not fully understood. 

Biomass growth can also influence a soil’s permeability [23, 24]. As biofilms become 

denser, they lead to bioclogging, reducing soil permeability. This impedes the nutrient dispersion 

across the HZ, subsequently slowing down biomass growth. This dynamic between biomass and 

permeability creates a negaEve feedback loop within the overarching feedback mechanisms. More 

biomass leads to reduced permeability, which in turn diminishes biomass growth. Many studies 

have invesEgated how bioclogging alters permeability [51-53], but few studies have simulated the 

impacts of permeability on biomass growth [54]. Furthermore, bioclogging simulaEons are oSen 

done in the context of homogeneous permeability simulaEons, meaning the impacts of soil 

heterogeneity on bioclogging and biomass growth are not well understood. 

ReacEve transport (RT) simulators [25, 26, 27] have emerged as powerful tools that allow 

for invesEgaEon and predicEon of phenomena within the hyporheic zone [28, 29, 30, 31]. Field 

and lab studies are oSen resource-intensive and require a large amount of Eme. Although not able 

to capture the same novelty and richness of informaEon available from in-situ measurements, RT 

simulaEons offer a highly analyEcal viewpoint of known physical and chemical phenomena that 

can be accurately described through systems of equaEons. RT simulators are constantly being 
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updated to include newly understood interacEons. However, given their vast complexiEes, it is 

inevitable that there will always be new relevant models that have yet to be applied to RT 

simulators, such as the speed-based decay of biofilms. 

In this chapter, we aim to provide two major contribuEons. First, we seek to further our 

understanding of the hyporheic zone by invesEgaEng the complex relaEonships governing 

biomass growth for a variety of input condiEons. Furthermore, we highlight the nuanced 

relaEonships between abioEc reducEon and bacterial proliferaEon and highlight how these 

relaEonships impact heavy meatal reducEon (using chromium as an example) in the hyporheic 

zone. Second, we seek to improve the representaEon of microbial physics in reacEve transport 

simulaEons by adding temperature-based biomass growth and speed-based biomass decay to 

PFLOTRAN, a popular reacEve transport simulator. To illustrate the impacts of our augmentaEons, 

we highlight the sensiEvity of temperature-based biomass growth and the sensiEvity of speed-

based biomass decay in terms of the overall biomass growth and the reducEon of chromium. 

 

5.3 Methods 

5.3.1 Description of RT Simulations 

5.3.1.1 Descrip=on of Chrotran 

Our simulaEons are built upon PFLOTRAN [26], a sophisEcated mulE-physics reacEve transport 

simulator developed collaboraEvely by mulEple naEonal laboratories. Specifically, we have 

adapted the Chrotran [32] version of PFLOTRAN to create a high-complexity simulaEon of biomass 

growth in the hyporheic zone at the Darcy scale. Chrotran models the dynamics of five key species: 

a heavy metal contaminant (in our case, Cr(VI)), an electron donor, biomass, a non-toxic 

conservaEve bio-inhibitor, and a biocide. It incorporates both direct abioEc reducEon through 
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donor-metal interacEon and bioEc reducEon driven by donor-induced biomass growth. Chrotran 

uses Monod kineEcs to define biomass growth as a funcEon of electron donor concentraEon, with 

addiEonal factors accounEng for biomass crowding, inhibiEon, and decay. We chose to make the 

input concentraEons of bio-inhibitor and biocide low to simplify the analysis of our simulaEons. 

Chrotran also includes crucial processes such as donor sorpEon (through a mobile-immobile mass 

transfer system), bio-fouling, and biomass death. Furthermore, Chrotran allows for bioclogging 

modeling by dynamically updaEng porosity and hydraulic conducEvity based on biomass 

concentraEon. The soSware can handle heterogeneous flow fields and arbitrarily many chemical 

species and amendment injecEon points, featuring full coupling between flow and reacEve 

transport. For a comprehensive descripEon of Chrotran’s capabiliEes and mathemaEcal 

formulaEon, please refer to Hansen et. al [32]. 

5.3.1.2 Speed-Based Biomass Decay 

We made certain modificaEons to the published version of Chrotran by adjusEng its parameters. 

Specifically, we calibrated biomass growth rates to align with the limited data available on biomass 

growth in the hyporheic zone [33, 34, 35]. AddiEonally, we adjusted steady-state concentraEons 

to be broadly representaEve of those found in wetland environments [36]. 

The original Chrotran model (EquaEon 1) defines biomass decay using a simple linear 

funcEon that only depends on a natural decay factor (𝜆p!) and the difference between the biomass 

concentraEon (B) and a minimum biomass threshold (B0).  

(1)     𝜆3 = 𝜆p!(𝐵 − 𝐵;) 

However, recent research suggests that biomass decay can also be influenced by shear stress [17]. 

Specifically, it has bee shown that the thickness of biofilms has an inverse logarithmic relaEonship 

with shear stress. In our study, we consider biofilm and biomass to be interchangeable. At high 
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flow speeds, significant shear stresses can form potenEally dislodging and transporEng biofilms 

and bacterial deposits. While ideally, we would incorporate shear stress values directly into 

Chrotran’s biomass decay funcEon, PFLOTRAN lacks the capability to calculate these stresses. As 

an alternaEve, we developed a funcEon that calculates cell-specific biomass decay based on cell-

specific Darcy velocity magnitude and biomass concentraEon (EquaEon 2). The decay rate 𝜆3 is 

given in units of  <Vq
<:∙%s

 . Since B is given in <Vq
<:   and v is given in m/hr, 𝛽 must have units of <

:

<Vq
  and 

𝛼 must have units of m/h. The units of the natural decay factor, 𝜆p!, depend on 𝛽(𝐵 − 𝐵;). For 

example, if 𝛽(𝐵 − 𝐵;) = 1, then 𝜆p!   must have units of <Vq
<;  . This contrasts with the original 

biomass decay equaEon for Chrotran, where 𝜆p!  has units of t-1. Thus, in our interpretaEon of 

biomass decay, the natural decay parameter can be considered a funcEon of any environmental 

factors not represented by 𝛼 and 𝛽.  

(2)     𝜆3 = 𝜆p!(𝑣 − 𝛼)
I(pAp$) 

For the main parameters of the equaEons (𝛽, 𝛼, 𝜆p!), we provide a sensiEvity analysis with 𝐵 = 1 

mol/m3, 𝜆p! = 1.8 × 10AB m3/mol, and 𝐵; = 1 × 10A7; mol/m3 for 𝑣 in the range of 

[1 × 10At, 100] m/hr (Fig. 1). The sensiEvity analysis of 𝜆p!  shows that the natural decay 

parameter simply increases the amount of decay for all valid velocity magnitudes (greater than 

𝛼). The sensiEvity analysis for 𝛽 shows that low values of 𝛽 correspond to a relaEvely low slope 

(i.e. small increase in decay as speed increases) but relaEvely high values of decay at low speeds 

(Fig. 4b). We interpret the 𝛽 parameter to represent the mechanics of the biofilm decay based on 

factors such as adhesive and cohesive forces. In general, bacterial adhesion to surfaces (such as 

soil grains) is weaker than cell-to-cell cohesion in mature biofilms. This is because iniEal 

aZachment to surfaces (adhesion) relies primarily on Van der Waals forces, electrostaEc 

interacEons, and specific molecular interacEons between bacterial surface proteins and the 
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substrate. On the other hand, cell-to-cell cohesion in biofilms involves producEon of extracellular 

polymeric substances (EPS) that form a strong matrix, mulEple types of chemical bonds between 

cells, physical entanglement of cells and matrix components, and the development of specialized 

structures for cell-cell aZachment. The stronger cohesive forces in biofilms explain why mature 

biofilms oSen detach as whole chunks (i.e., sloughing) rather than individual cells when exposed 

to shear forces. The bacteria essenEally create their own reinforced "community structure" that's 

more robust than their iniEal surface aZachment.  

The case of low 𝛽 describes an immature biofilm in which the individual bacteria are 

unable to rapidly colonize surfaces and have weak adhesive forces that cause detachment at low 

flow speeds. As speed increases, the decay also increases due to this weak adhesion which results 

in sloughing. The case of high 𝛽 describes a mature biofilm that has stronger adhesive forces at 

low flow speed (since most of the shear force impacts the outer walls of the biofilm), but weak 

adhesive and cohesive forces at high speed. In this case, the mature biofilm is thicker, and high 

shear stresses may lead to sloughing events, thus causing a larger increase in biomass decay 

(relaEve to the case of low 𝛽). While these phenomena may accurately describe situaEons for 

specific biofilms, we recognize that a more robust and flexible version of this parameter would 

also allow for changes in the slope (i.e., different values of 𝛽) for different values of velocity, since 

there are a variety of valid decay-speed slopes depending on the physiochemical characterisEcs 

of the biofilm and the environmental condiEons. However, when we aZempted to make the 

exponent term a funcEon of velocity as well, the simulaEons in PFLOTRAN became divergent.  

The sensiEvity analysis for 𝛼 shows it has the least impact on biomass decay of the three 

fikng parameters. Physically, 𝛼 can be thought of as represenEng the threshold fluid speeds 

required to iniEate shearing at the periphery of the biofilm. For our implementaEon in PFLOTRAN, 
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we use a condiEonal statement that returns the value of (𝑣 − 𝛼) if 𝑣 > 𝛼, else we return 10-10 in 

place of (𝑣 − 𝛼). The underlying premise of our biomass decay equaEon is that iniEal scouring 

establishes a steady-state biomass concentraEon at a given flow velocity. Subsequent increases in 

flow velocity lead to enhanced scouring, aZributed to both the elevated flow speed and the 

formaEon of preferenEal flow channels within the biofilm matrix. We calibrated the fikng 

parameters 𝛼 and 𝛽 through a comparaEve sensiEvity analysis with published research on biofilm 

thickness as a funcEon of shear stress [17]. It is well-established that the distribuEon of micro and 

pore-scale  

 
 
 
 
 
 
 
Figure 1: Sensi3vity analysis of parameters in the augmented biomass decay equa3on for a biomass 
concentra3on of 1 mol/m3. (a) Sensi3vity of the 𝜆p!parameter. Higher values of 𝜆p!result in a larger amount 
of ini3al decay for speed>1e-4, but don’t impact the long-term slope of the rela3onship between speed and 
decay. (b) Sensi3vity of the 𝛽 parameter. Higher values of 𝛽 result in a smaller amount of ini3al decay but a 
greater slope. (c) Sensi3vity of the 𝛼 parameter. Higher values of 𝛼 result in a greater increase in ini3al 
decay, but the speed required to produce the ini3al decay is greater. 
 

velociEes can diverge significantly from Darcy-scale velociEes [37]. Given that biofilms primarily 

develop within pore spaces, they are subject to pore-scale velocity variaEons, resulEng in higher 

shear stresses on the biofilms compared to Darcy-scale calculaEons. To address this scale 

discrepancy, we employed OpenFOAM [38, 39] to simulate two homogeneous porous geometries, 

each measuring 665 µm by 665 µm, with a porosity of 25% but differing in pore length and grain 

diameter (Fig. 2). Both simulaEons revealed an approximate order of magnitude difference 

between mean and maximum shear stresses. Consequently, we applied a pore-scale correcEon 
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factor of 10, as described in the capEon of Figure 2, to adjust the shear stresses derived from 

PFLOTRAN’s Darcy-scale simulaEons. 

 

  
Figure 2: Shear stress fields derived from OpenFoam simula3ons of a 25% porosity geometry with a grain 
diameter of 20 µm and 40 µm. The D = 20 µm simula3on has a mean shear stress of 1.27e-7 and a max shear 
stress of 7.89e-7. The D = 40 µm simula3on has a mean shear stress of 2.71e-7 and a max shear stress of   
1.86e-6. The ra3o of max to mean shear stress increases as grain diameter increases (6.21 to 6.86), indica3ng 
that a pore scale correc3on factor of 10 is reasonable for our simula3ons, where average grain diameters 
may theore3cally range from less than 1 µm (clay) to 100 mm (gravel). 
 

In our shear stress calculaEons from PFLOTRAN, we opted to use the maximum shear 

stress rather than the average. This decision is jusEfied by the sparse spaEal distribuEon of 

significant shear stresses, which primarily occur at interfaces between units of differing 

permeability where large velocity gradients exist (Fig. 3). While our Gaussian permeability fields 

contain few sharp disconEnuiEes, real soil systems typically exhibit high heterogeneity at the pore 

scale, suggesEng that our simulated shear stress fields are likely more uniform than the stress 

fields in real soil systems.  Therefore, we posit that the maximum shear stress serves as a 

reasonable proxy for the true mean shear stress in more heterogeneous systems. 

To validate our approach, we created three baseline simulaEons and calculated their shear 

stresses using the aforemenEoned methodology. We then correlated these values with those 

presented in Figure 5 of [17], compuEng the percentage difference in biomass concentraEons for 

each increment in shear stress (Fig. 4). These percentage differences were compared to the 

corresponding changes in biomass thickness reported in the literature, allowing for a final 

D = 20 D = 40 
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calibraEon. This comprehensive calibraEon process yielded opEmal values of 𝛽 = 0.8 and 𝛼 =

2 × 10Au. This rigorous approach to parameterizaEon, incorporaEng both theoreEcal 

consideraEons and empirical data, enhances the robustness and applicability of our biomass decay 

model across various hydrodynamic condiEons in the hyporheic zone. 

 

 
Figure 3. Average shear stress field for the high-speed calibra3on simula3on. High shear values (5𝑒() to  
5.4𝑒(*), indicated by red color, occur due to sharp transi3ons in permeability and high velocity magnitude. 
The top right sec3on of the domain contains preferen3al channels with high local veloci3es. When these 
high veloci3es encounter low-permeability transi3ons, their direc3ons change and veloci3es significantly 
reduce, resul3ng in large velocity gradients (and thereby shear magnitudes). Areas of the spa3al domain 
with lower velocity or less transi3ons between high and low permeability, which comprise the majority of 
the total area, generally have shear values of 1𝑒(+ to 6𝑒(,. 
 

In addiEon to our augmentaEon of the biomass decay equaEon, we also altered the 

standard Chrotran biomass growth funcEon to be a funcEon of temperature. Numerous studies 

have shown that microbial growth generally increases with increasing temperature [40-43], and 

that this dependence may be modeled by the Ratkowski funcEon [44]. The standard 

implementaEon of the Ratkowski funcEon was difficult to implement in PFLOTRAN, so we use a 

sixth degree polynomial that accurately represents the Ratkowski funcEon from 1 to 30 ℃.  

Specifically, we parameterized the Ratkowski funcEon as  
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(3)     𝜆p4 = 𝑃7𝑇k + 𝑃5𝑇B + 𝑃Y𝑇C + 𝑃C𝑇Y + 𝑃B𝑇5 + 𝑃k𝑇 + 𝑃u  

where P1 = −2.9×10−9, P2 = 2.3×10−7, P3 = −6.5×10−6, P4 = 6×10−5, P5 = 1.4 × 10−4, P6 = 2.4 × 10−2, 

and P7 = 0.196. Accurate in-situ temperature Eme series were given for each of the in-situ 

hyporheic flux Eme series’ that we chose to simulate (gaining, high gaining, losing, high losing, and 

Hanford), which allowed use to make use of this temperature-based growth equaEon in the 

context of realisEc temperature fluctuaEons. Plugging equaEons (2) and (3) into the original 

Chrotran biomass growth equaEon gives 

(4)      𝜇3 = 𝜆p𝜆p4𝐵
@

(<J@
h (6
(6Jp

i
v.
− 𝜆3 

where 𝜇3 is the biomass growth rate, 𝜆p is a growth rate parameter, D is the electron donor 

concentraEon, KD is the half-saturaEon constant for the electron donor, KB is a Monod constant, 

and 𝛼.  is the crowding parameter. 

 
Figure 4. Biomass 3me series for a low-speed (blue), medium-speed (orange), and high speed (yellow) 
simula3on. The legend gives the maximum shear for each simula3on. With the pore-scale to darcy-scale 
correc3on of 10, we get max shear values of .054, .024, and .012. From the micro-scale experiments of 
shear-based biofilm breakup [17], these shear values correspond to biofilm thicknesses (aPer a 14 hour 
growth period) of 18, 25 and 31, or a 19% decrease in thickness going from 𝜎 = .012 Pa to 𝜎 = .024 Pa and 
and 28% decrease in thickness going from 𝜎 = .024 Pa to 𝜎 = .054 Pa. Our steady-state biomass 
concentra3ons show similar percentage differences (22% and 29%), indica3ng a rela3vely accurate 
calibra3on of our speed-based biomass decay. 
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5.3.1.3 Permeability and Flow 

Studies have shown that biomass growth in the hyporheic zone is strongly linked to the hyporheic 

flux [9, 7, 45, 46]. Depending on the concentraEon of nutrients and the flow speed of the 

groundwater and surface water flows, a posiEve or negaEve flux can have different impacts on 

growth. To gain deeper insight into how exactly these differences affect biomass growth, we 

simulated the hyporheic zone under a variety of realisEc flow condiEons (Fig. 5a). 

 
Figure 5: Time-series of pressure boundary condi3on groups used in the simula3ons. For each group, slight 
varia3ons to the 3me-series were introduced to develop a much wider variety of poten3al flow condi3ons 
for the simula3ons. 
 

The gaining and losing flow condiEons at high speed represent the largest hyporheic fluxes 

we were able to find in the literature [35], and the low-speed gaining and losing condiEons 

represent much smaller fluxes. In addiEon, we use hydrographs that come from hyporheic flux 

data measured at the Hanford site [34]. Thus, we examine feedback cycles and staEsEcal 

relaEonships in the hyporheic zone from a general perspecEve that can be considered the average 

of a variety of previously published data. Furthermore, although it is unclear how much each base 

Eme series hydrograph influences our overall analysis, the results we present are indirectly 

relevant to chromium bioremediaEon simulaEons of the Hanford site. 

In addiEon to the general direcEon and magnitude of flow, permeability has a significant 

influence on the general transport of nutrients and biomass within the hyporheic zone. At low 
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permeabiliEes, biomass and nutrients are less able to disperse throughout the hyporheic zone, so 

average biomass concentraEons over a large area will be less. However, hotspots of high biomass 

concentraEon may sEll form in low permeability zones, which may also result in bioclogging. To 

understand how exactly biomass growth is impacted by a variety of permeabiliEes, we created a 

variety of heterogeneous permeability fields with different covariance raEos (Fig. 6). Although the 

mean permeability was similar for most simulaEons (around 2e-10 m2), the effecEve permeability 

(Keff) would change based on the covariance raEo. Furthermore, we also ran simulaEons at 

extremely low permeability to understand biomass growth in a significantly different 

environment. 

5.3.1.4 Boundary Condi=ons 

We model a segment of the hyporheic zone as a verEcal slice measuring 1 meter in height and 2 

meters in length. This slice represents the interface between groundwater and surface water, with 

the top and boZom boundaries corresponding to surface flow and groundwater respecEvely. The 

leS and right boundaries extend the hyporheic zone longitudinally along the direcEon of river or 

 
 
 
 
 
 
 
 
 
 
Figure 6. Sample heterogeneous permeability distribuEons (at t=0) used in simulaEons featured 
in this study. This figure is also featured in some of our unpublished work on upscaling the 
simulaEons discussed in this study. 
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groundwater flow. Flow condiEons at the top and boZom are controlled by Dirichlet boundaries, 

with pressure differenEals set according to the simulaEon type: gaining, losing, or Hanford. The 

lateral boundaries allow for bidirecEonal flow, regulated by a Dirichlet pressure boundary of zero 

on one side and a constant value on the other side. Transport boundary condiEons mirror those 

used for flow. The transport boundary condiEons for each chemical species were varied over our 

mulEtude of simulaEons, but the groundwater (transport from boZom into the domain) generally 

contained higher concentraEons of nutrients and chromium than the surface water. 

A variety of scales were used for the simulaEons in our study. For our analysis of feedback 

cycles and general relaEonships observed in our simulaEons, we created simulaEons that were 

1x2 meters, 1x4 meters, and 1x20 meters that all had a dx and dy of 0.01 meters. For our sensiEvity 

analysis of the impacts of our velocity-based biomass decay on biomass growth and chromium 

reducEon, we created simulaEons that were 1x2 meters and had a dx and dy of 0.005 meters. 

Scale is not a main point of the analysis presented in this chapter, and the simulaEons of mulEple 

scales were primarily generated for the purpose of training the deep-learning-based upscaling 

model presented in chapter 6 of this dissertaEon. However, our inclusion of simulaEons at mulEple 

scales in this chapter does act to add to the overall variability between simulaEons, resulEng in a 

more general and scale-agnosEc analysis of biomass growth in the hyporheic zone. 

 

5.3.1.5 Simula=on Variables 

The variables (also referred to in this work as features) of the simulaEons, as well as their range of 

possible values, are given in Table 1. All of the features that depend on the Eme-evoluEon of the 

simulaEon, such as biomass, chemistry, and flow speed, are referred to as the “physio-chemical  
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Table 1. Descrip3on of physio-chemical features and their ranges of possible values used in the simula3ons. 
B: biomass, ED: electron donor (molasses), Cr(VI): chromium, Vy: horizontal velocity,  Vx: ver3cal velocity, P: 
pressure, T: temperature, ϕ: porosity, k: permeability. 

Var 
B 

(mol/m3) 
ED 

(mol/L) 
Cr(VI) 

(mol/L) 
Vy 

(m/hr) 
Vx 

(m/hr) P (Pa) T (℃) 𝜙 K (m2) 
Min 1e-10 1e-20 1e-20 -632 -486 -1214 4.8 1e-4 1e-15 
Max 768 5.5e-3 7.6e-3 671 651 7099 25 0.6 1e-9 

Mean 58 8.1e-6 1.4e-5 -5.8e-2 -1.4e-2 786 11.5 0.13 2e-10 
 
 
features.” The variables that are prescribed at the beginning of the simulaEon and don’t change 

value over Eme are referred to as “input variables”. 

 

5.3.2 Sensitivity Analysis 

One of the primary goals of this study is to gain deeper insight on the abioEc controls of biomass 

growth in the hyporheic zone. To this extent, we employ a variety of sensiEvity and correlaEon 

analyses to understand how different features may impact growth. We use classical sensiEvity 

analysis, changing one feature and keeping all others equal, to determine the individual impacts 

that each feature may have on biomass growth. Furthermore, we use a Monte-Carlo-type 

sensiEvity analysis to understand feature relaEonships at a more global level. Specifically, we ran 

344 simulaEons of the hyporheic zone, each under slightly different input condiEons, then used 

PCA and cluster analysis to understand physio-chemical feature relaEonships and groupings. In 

addiEon, we used a correlaEon heatmap to idenEfy correlaEons between all the simulaEon 

features (both physio-chemical features and input variables). 

 
5.4 Results 

5.4.1 Feedbacks and Mechanisms of Biomass Growth 

The primary known physio-chemical features that impact biomass growth at scale, as well as their 
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Figure 7. Known feedback cycles from physical features present in simula3ons of biomass growth in the 
hyporheic zone. A blue arrow signifies a posi3ve causa3ve effect (increase leads to increase), and a red 
arrow indicates a nega3ve causa3ve effect (increase leads to decrease). 
 
 
general relaEonships with each other, are shown in Figure 7. While modeling of oxygen 

concentraEons was beyond the scope of this study, we included it as a primary variable in the 

biomass feedback loop because of the vast literature detailing the impacts of oxygen depleEon on 

bacteria [45, 47, 48]. These interacEons were also discussed in the introducEon, but essenEally, 

changes in flow cause changes in nutrient concentraEons and temperature which then cause 

changes in biomass growth. As biomass grows, it consumes nutrients and oxygen, and reduces the 

local permeability of its substrate. This decrease in permeability in turn causes a decrease in local 

fluid speed. The only relaEonship shown in this feedback loop that hasn’t been widely reported 

on is that an increase in the flow vector may cause a decrease in biomass. Specifically, an increase 

in flow speed, which thereby leads to an increase in pore-scale shear forces, can result in the 

breakup and dispersal, and/or sloughing, of biofilms. This feedback loop represents some of the 

primary intuiEve relaEonships for biomass growth, but the relaEve importance of each 

relaEonship depends on a number of other factors specific to the hydro-biogeochemical sekngs 

of the domain in which the biomass growth occurs. In our own simulaEons, which are further 

Biomass

Flow Vector

Nutrients

Temperature

Permeability

Oxygen
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discussed in greater detail throughout the rest of the chapter, we find many of the intuiEve 

relaEonships presented in Figure 7 do not show high correlaEon values, further showing the 

specificity of biomass feedback loops in relaEon to the characterisEcs of the domain. The results 

presented in this chapter thus intend to refine the assumpEons of the standard biomass feedback 

loop. 

 

5.4.2 Spatial Trends 

The average spaEal distribuEons of the physio-chemical features for one of our losing simulaEons 

(Fig. 8) can be used to elucidate some of the relaEonships in our biomass growth feedback loop. 

Biomass is greatest in the high-porosity zones around the edges of the domain, and concentraEons 

are smallest in the low-porosity zone in the middle of the domain. Where fluid speeds are largest, 

we see the greatest amount of lateral extension of biomass towards the middle of the domain. In 

addiEon, a small amount of velocity-based biomass decay can be observed in the lower right 

corner of the domain for the biomass distribuEon. The spaEal distribuEon of molasses looks 

similar to that of biomass except the gradients are smoother. The temperature seems to be 

primarily determined by the horizontal flow (Vy). The spaEal distribuEon of Cr(VI) seems to be 

primarily determined by molasses and Vy. Because pressure is lowest at the boZom boundary and 

highest at the right boundary, this results in a top-right to boZom-leS pressure gradient. However, 

since the enEre leS boundary of the domain has higher pressure than the boZom boundary, there 

is also a top-leS to boZom-right pressure gradient. Thus, fluid and nutrient flux enters in the top, 

right and leS sides of the domain and primarily exits the domain at the middle of the boZom 

boundary. Thus, the high Cr(VI) concentraEons on the leS are a result of inward flux from the leS 

side of the domain, and the low Cr(VI) concentraEons are a result of both inward flux from the 
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right side of the domain and high biomass/molasses concentraEons. The impacts of biomass 

growth on Cr(VI) reducEon can be seen in the slightly elevated concentraEons of Cr(VI) near the 

right boundary where biomass concentraEons are high. Although molasses concentraEons are 

also high here, most of it is immediately consumed by biomass and won’t be available for abioEc 

reducEon. Thus, where biomass concentraEons are lower, even though molasses is also lower, we 

see greater reducEon in chromium concentraEons. In other words, the scale of the variability of 

biomass concentraEons (x=400 to x=350 is a 200 Emes decrease in concentraEon) is greater than 

that of molasses concentraEons (x=400 to x=350 is a 7 Emes decrease). Thus, at least for this 

simulaEon, abioEc reducEon is more efficient that bioEc reducEon (i.e., 1 mol of molasses spent 

on abioEc reducEon results in more total reducEon than 1 mol of molasses spent on biomass 

growth). 

In addiEon to the temporally averaged spaEal distribuEons of key physio-chemical 

features for a single simulaEon, we present the average normalized spaEal distribuEons of the 

physio-chemical features over all of our simulaEons (Fig. 9). This figure represents the general 

spaEal trends that persist aSer averaging over each 1x2 meter simulaEon. The averaged spaEal 

distribuEons of biomass, molasses (labeled as ED in Figure 9) and Cr(VI) all have a significant 

degree of similarity due to the boundary condiEons of the simulaEons. Although the 

concentraEons of these features were randomized in our simulaEons, the predominant direcEon 

of flow over the enErety of our simulaEons is from top (surface water) to boZom (groundwater). 

However, on average the surface water contains decreased levels of ED relaEve to the 

groundwater (not realisEc, but a facet of the random variaEons of simulaEons), meaning biomass 

growth is generally greater in the gaining simulaEons. Thus, as groundwater flows into the domain 

from the boZom, and because nutrient and biomass concentraEons had low iniEal values and the 
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transport condiEons are greater than those at the top boundary, each of these variables shows 

high values near the boZom of the domain. The high concentraEons of biomass on the right side 

of the domain are a result of the fact that most simulaEons featured lateral flow moving from the 

right to leS side of the domain. Porosity, although impac�ul at the level of a single simulaEon, 

seems to have no impact on biomass or ED concentraEons when averaged over all simulaEons. 

However, porosity does have a large impact on immobile molasses concentraEons, with higher 

amounts of EDim appearing where porosity is high. Similar to the average spaEal distribuEons for 

a single simulaEon, the average spaEal distribuEons over all simulaEons show the impacts of fluid 

speed on biomass decay as a slightly lower concentraEon of biomass in the lower right corner. 

 

 
Figure 8. General (averaged over all simula3ons and 3me steps) trends for key physio- chemical features. 
Each variable is normalized, with 0 (dark blue) corresponding to low values and 1 (dark red) corresponding 
to high values. 
 
These results highlight the complex interplay between physical, chemical, and biological processes 

in the HZ, demonstraEng the importance of considering spaEal heterogeneity and temporal 

dynamics in modeling efforts. The observed dominance of abioEc reducEon over bioEc reducEon, 

even in areas of high biomass concentraEon, provides a nuanced view to the relaEonship between 

bioEc and abioEc reducEon and has significant implicaEons for bioremediaEon strategies. 
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5.4.3 Temporal Trends 

The temporal trends (Fig. 10) of the physiochemical features reveal a variety of insights related to 

the feedback mechanisms involved in these simulaEons. The red doZed lines in each Eme series 

plot show the Eme value of the inflecEon points for biomass growth (Fig. 10e). Average biomass 

concentraEons increase very slowly for the first 18 days, increase rapidly for the next 36 days, then 

increase at a slightly lower growth rate for the rest of the simulaEon (Figs. 10d and 10e). The first 

inflecEon point (at t = 18 days) corresponds to the Eme when biomass growth starts to  

 
Figure 9. General (averaged over all simula3ons and 3me steps) trends for key physio- chemical features. 
Each variable is normalized, with 0 (dark blue) corresponding to low values and 1 (dark red) corresponding 
to high values. 
 
dramaEcally increase. This also represents the point that ED and ED-immobile start to significantly 

decrease, Cr(VI) starts to increase, and porosity starts to decrease. We find that the relaEonship 

between biomass concentraEons (in mol/m3) and porosity can be described via the equaEon 

(5)      ϕ = .141 − 10−4Cbio          

where Cbio is the biomass concentraEon. This equaEon may be useful for predicEng general trends 

in porosity as a funcEon of biomass concentraEons, although it is important to note that this 
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funcEon only represents our average simulaEon, and the exact value of this funcEon will depend 

on a variety of factors such as soil type, microbial community structure, flow rates, and nutrient 

concentraEons. At the highest amounts of growth (around day 46- 52), biomass growth has a clear 

correspondence with pressure and Vx (Figs. 10b and 10a). The increase in pressure corresponds to 

a large decrease in the magnitude of Vx and a small increase in the magnitude of Vy. These changes 

in flow then cause an increase in molasses, chromium and the rate of biomass biomass growth. 

Around t = 52, the pressure starts to drop again and the magnitude of Vx increases, resulEng in 

decreases in biomass growth, Cr(VI) and ED. At t = 60, the molasses concentraEons and biomass 

growth rate start to increase again, but the chromium concentraEon conEnues to decrease. The 

verEcal flow (Vx) thus seems to have a large effect due to the transport input condiEons at the top 

boundary. Specifically, greater negaEve verEcal velociEes, represenEng flow from the top of the 

domain to the boZom, seem to result in a increase in molasses concentraEons, which thus causes 

an increase in biomass growth. Although biomass growth and molasses concentraEons are 

enhanced due to increased nutrient flux from the top boundary, the amount of Cr(VI) is also 

increased from the greater top-boundary flow, resulEng in a small increase in Cr(VI) 

concentraEons from day 42 to day 52. At t = 70, we approach the steady-state trends of the 

simulaEons. From this point onward, the magnitude of Vy slowly decreases, Vx and pressure slowly 

increase, biomass growth and Cr(VI) slowly decrease, and molasses slowly increases. At this point, 

biomass concentraEons are relaEvely high, meaning the increase in Vx and pressure cause a 

corresponding decrease in growth due to velocity-based biomass decay. While at t = 50 the spike 

in Vx causes an increase in the biomass growth rate, by t = 70 it starts to cause a decrease in the 

growth rate. The greater negaEve values of Vx also should result in increased concentraEons of 

Cr(VI) considering the transport boundary condiEons. However, because ED concentraEons 
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steadily increase due to the decrease in biomass growth, the increased amount of abioEc 

reducEon is enough to cause a decrease in Cr(VI). This indicates some dominance of abioEc 

reducEon over bioEc reducEon, although it is not possible to completely parse each impact from 

these general Eme series. For a more robust analysis of the relaEve strengths of bioEc and abioEc 

reducEon, we provide a sensiEvity analysis of the molasses consumpEon stoichiometry coefficient 

𝐷1, discussed in the following secEon. 

These findings reveal the intricate temporal dynamics of biomass growth, nutrient cycling, 

and chromium reducEon in the HZ. The idenEficaEon of key inflecEon points and the 

quanEficaEon of relaEonships between variables, such as biomass concentraEon and porosity, 

provide valuable insights for predicEng system behavior and opEmizing remediaEon efforts. 

5.4.4 Drivers of Biomass Growth and Chromium Reduction in the Hyporheic Zone 

5.4.4.1 Sensi=vity Analysis 

To gain deeper insights into the bioEc and abioEc determinants of biomass growth in the 

hyporheic zone, we used sensiEvity and correlaEon analysis. The sensiEvity analysis (Fig. 11) 

shows the biomass Eme series and spaEal distribuEons of the last Eme step for 6 equally spaced 

values of a simulaEon input variable (keeping all other input variables constant). We performed 

sensiEvity analysis for five key variables (temperature, carbon reuse efficiency/molasses 

consumpEon stoichiometry coefficient, homogeneous permeability value, verEcal velocity (Vx), 

and the biomass crowding parameter). The temperature sensiEvity analysis (Fig. 11a) shows that 

at higher temperatures the biomass growth rate increases, leading to differences in biomass 

concentraEons that remain constant aSer about day 60. The spaEal distribuEons show more 

variaEon in biomass concentraEons for higher-temperature simulaEons. The carbon reuse 

efficiency (𝐷1), is a Chrotran parameter that defines the stoichiometric relaEonship between the 
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Figure 10. General (averaged over all simula3ons and spa3al dimensions) temporal trends for key physio-
chemical features. The red do`ed lines show the approximate 3me of the biomass growth inflec3on points. 
(a) Vx (blue) and Vy (orange). (b) Pressure. (c) Porosity. (d) Biomass. (e) Biomass growth. (f) Cr(VI) (blue), ED 
(orange), and ED-immobile (green). Here, biomass growth is shown to primarily be dependent on ED 
concentra3on. The Cr(VI) 3meseries shows an increase in concentra3on as molasses decreases, indica3ng 
the dominance of abio3c reduc3on over bio3c reduc3on. 
 

ED and biomass. So for 𝐷1 = 1, one mol of ED creates one mol of biomass. The sensiEvity analysis 

for 𝐷1 (Fig. 11b) shows that lower values of 𝐷1 result in an increase in biomass growth that 

increases over Eme. The spaEal distribuEons show that for lower values of 𝐷1 , the biomass 

spreads further throughout the domain. The permeability sensiEvity analysis (Fig. 11c) indicates 

that mean permeability of the domain has a huge impact on biomass growth. For k = 1 × 10−12 

there is a minute amount of biomass growth that can be observed in the boZom corners of the 

spaEal distribuEon, but for lower permeability values, we don’t observe any biomass growth. A 

permeability of 1× 10−12 m2 is representaEve of silty sand or permeable basalt, implying that 

aquifers primarily composed of these materials (or lower-permeability materials) are not likely to 

house large concentraEons of biomass. The Vx sensiEvity analysis (Fig. 11d) indicates that greater 

verEcal velocity contributes to a more sigmoidal (as opposed to linear or exponenEal) growth 
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curve, results in generally greater biomass growth, and causes the growth curve to have small 

undulaEons. This wave-like behavior is a result of spikes in flow speed causing significant shearing 

of biomass, thus briefly decreasing the rate of biomass growth. α is another Chrotran parameter 

that describes biomass crowding. For higher values of alpha, we see slightly lower biomass 

concentraEons over Eme, although the main difference is in the spaEal distribuEons (Fig. 11e). 

When crowding is high (low 𝛼), we get much higher concentraEons of biomass that are 

constrained to the first few cenEmeters of the domain. When crowding is low, we get a lower 

maximum biomass concentraEon, but the biomass is spread throughout the enEre domain. 

Overall, the sensiEvity analysis shows that many input features result in large changes to biomass 

concentraEons, illustraEng the complexity of determining the most important general impacts on 

biomass. The analysis also idenEfies mean permeability as the most criEcal factor in biomass 

growth (compared to the other variables in the sensiEvity analysis).  

In addiEon to the sensiEvity analysis of biomass, we also provide a sensiEvity analysis of 

chromium reducEon (Fig. 12). Specifically, we provide the average spaEal distribuEons (Fig. 12a-

12d) and Eme series (Fig. 12e) for simulaEons with: no biomass (Fig. 12d), biomass with low 

molasses consumpEon stoichiometry (Fig. 12a), medium consumpEon stoichiometry (Fig. 12b), 

and high consumpEon stoichiometry (Fig. 12c). The molasses consumpEon stoichiometry, given 

here as 𝐷1, gives the number of mols of molasses require to produce 1 mol of biomass. Thus, for 

𝐷1	 = 	0.1, 1 mol of molasses produces 10 mols of biomass, and for 𝐷1	 = 	10, 1 mol of molasses 

produces 0.1 mols of biomass. Although it is unlikely for 1 mol of molasses to produce 10 mols of 

biomass (since the molar mass of a microbial cell is on the order of 109, about 7 magnitudes larger 

than the molar mass of molasses), the 𝐷1	parameter can also be thought of as carbon reuse 

efficiency. When microbes die, they release bioavailable carbon that may be used by other 
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Figure 11. Sensi3vity analysis for selected features with large impacts on biomass growth. For each feature, 
we show the 3me series, as well as the spa3al distribu3ons of biomass for the final 3me step. The colorbars 
show biomass concentra3on in mol/m3. (a) Temperature sensi3vity. (b) Carbon reuse efficiency (𝐷1) 
sensi3vity. (c) Biomass permeability sensi3vity. (d) Mean Vx (ver3cal flow speed) sensi3vity. (e) Biomass 
crowding coefficient (𝛼) sensi3vity. Biomass concentra3ons for the temporal sensi3vity plots are given in 
mol/m3, and concentra3ons for the spa3al sensi3vity plots are given in mg/kg. 
 
microbes to grow [50]. In the situaEon with no biomass growth (Fig. 12), chromium reducEon is 

enErely dominated by abioEc reducEon. Over Eme, the amount of incoming chromium at the 

domain boundaries exceeds the amount of incoming molasses, meaning we see fast reducEon of 

chromium for the first 50 days, but once the molasses is consumed and starts to run out, the 

chromium concentraEon increases (Fig. 12e). The situaEon with 𝐷1	 = 	0.1 unsurprisingly shows 

a large amount of chromium reducEon (Fig. 12a), since the small amount of molasses 

consumpEon results in significant bioEc and abioEc reducEon. For 𝐷1	 = 	1, the molasses 

consumpEon is greater, resulEng in a smaller amount of bioEc and abioEc reducEon compared to 

the 𝐷1	 = 	0.1. Compared to the no biomass growth situaEon, there is less chromium reducEon 

throughout most of the spaEal domain, but there are biomass-induced hotspots of reducEon near 

the boZom of the domain (Fig. 12b). The Eme series for the  𝐷1	 = 	1 case shows that chromium 

reducEon starts off slower than the case with no biomass growth, but towards the end of the 

simulaEon, the 𝐷1	 = 	1 case has a negaEve slope, whereas the no biomass growth case has a 

posiEve slope. This can be explained by the fact that abioEc reducEon is largely responsible for 

reducEon at early Emes, but becomes less of an important factor over Eme as the electron donor 

concentraEon decreases. At later simulaEon Emes (t > 60 days), the bioEc reducEon starts to make 

a significant impact on chromium concentraEons, resulEng in similar end-simulaEon 

concentraEons for the no biomass growth case and the 𝐷1	 = 	1 case. For the 𝐷1	 = 	10 case, all 

the molasses is quickly consumed by chromium and biomass, but not enough biomass grows to 

cause significant bioEc reducEon, resulEng a small amount of iniEal reducEon, then no reducEon, 
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with a flat curve reflecEng the chromium concentraEon for the constant transport boundary 

condiEon of these simulaEons. 

5.4.4.2 Sta=s=cal Analysis 

To further invesEgate the impacts of our simulaEon variables on biomass concentraEons in a more 

general sense, we used PCA and cluster analysis (Fig. 13a) to idenEfy groupings and large-scale 

relaEonships across all of our simulaEons. The first principal component, which explains 25% of 

the variance of the dataset, seems to be primarily determined by biomass, nutrients, chromium, 

molasses consumpEon stoichiometry coefficient (previously represented by 𝐷1, but in Figure 13 

is represented by 𝜆@), and 𝜆- , which controls the bio-reducEon reacEon rate. Thus, the first 

principal component can be summarized as represenEng the primary factors impacEng chromium 

remediaEon and biomass growth. The second principal component, which accounts for 17% of 

the total variaEon in the data, is primarily determined by flow vectors, pressure, permeability 

covariance, 𝜆- , 𝛼 (the biomass crowding coefficient), porosity, and temperature. Generally, these 

variables represent the various boundary condiEons of the simulaEons.  

We also see interesEng sets of groups that form as a result of cluster analysis in the space 

of the first two principal components. The right cluster can be described as the biomass and 

nutrient cluster, the top is the flow and porosity cluster, and the leS is the Cr(VI) cluster. These 

clusters also represent most of the strongest correlaEons present in our simulaEons. Loosely, the 

features within a cluster are likely to be posiEvely correlated with each other, the right and leS 

clusters are likely to be negaEvely correlated with each other, and the top cluster has both posiEve 

and negaEve correlaEons with the features of the leS and right clusters.  
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Figure 12. Sensi3vity analysis for molasses consump3on stoichiometry 𝐷1. (a) Spa3al chromium 
concentra3on difference distribu3on (𝐶-.(/0.12' − 𝐶34) for 𝐷1	 = 	0.1, which means 1 mol of molasses 
produces 10 mols of biomass. The concentra3on for (a) is mostly posi3ve because chromium remedia3on 
is greater in the case of a low stoichiometric coefficient compared to the situa3on with no biomass growth. 
(b) Spa3al difference distribu3on for 𝐷1	 = 	1. (c) Spa3al difference for 𝐷1	 = 	10. (d) Average spa3al 
concentra3ons of chromium in the case of no biomass growth. (e) The colorbars show chromium 
concentra3on (or difference in chromium concentra3on for the plots on the leP) in mol/L.  
 

These correlaEons are further explored in the correlaEon matrix heatmap (Fig. 13b). The 

correlaEons indicated in the PCA (Fig. 13a) differ from those shown in the correlaEon matrix 

heatmap (Fig. 13b) for three key reasons. First, while PCA captures the direcEons of maximum 

variance in the data, these principal components are not direct measures of correlaEon between 

variables - rather, they represent linear combinaEons of variables that explain the most variance 

in the dataset. Second, our PCA analysis was restricted to physio-chemical features, while the 

correlaEon matrix encompasses a broader set of parameters, including a variety of biomass 

growth parameters from Chrotran (𝛼, λB, λC, and λD), permeability covariance raEo (𝑘-w), and Eme. 

Finally, for the PCA we use the Eme-and-space-averaged features of each simulaEon as input 

(since PCA requires a 2D input), but for the correlaEon matrix, since we also include Eme, we use 

the space-averaged features for each Eme point for each simulaEon as input. 

a.

b.

c.

d.

e.
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For biomass, the strongest correlaEons (as determined by magnitude in the correlaEon 

matrix) with other variables determined over all 344 simulaEons are σbio (0.58), Eme (0.50), σP 

(0.35), λD (-0.30), pressure (0.30), ED (0.28), EDim (0.28), porosity (-0.24), λC (0.22), and finally 

chromium (-0.18). Surprisingly, biomass is more strongly correlated with the standard deviaEon of 

pressure than the pressure itself (except for chromium). The reason for this is likely because the 

standard deviaEons of features are more strongly correlated with the simulaEon boundary 

condiEons than the features are. These correlaEons also indicate that biomass concentraEons are 

highly dependent on Eme and nutrient concentraEons, which are both normal assumpEons made 

about biomass growth. Furthermore, the mathemaEcal dependence of biomass growth on Eme 

and an electron donor is explicitly defined through Chrotran, so it is of no surprise that these 

variables are strongly posiEvely correlated with biomass in our simulaEons. Perhaps more 

surprising, the augmentaEons we have introduced do not seem to result in significant correlaEons. 

Biomass is posiEvely correlated with temperature with a value of 0.04, meaning that the impact 

of incorporaEng the Ratkowski funcEon into the biomass growth equaEon is negligible. However, 

this may be a result of the temperature boundary condiEons of the simulaEons since the 

sensiEvity analysis of biomass growth shows a clear posiEve correlaEon between temperature and 

biomass concentraEon (Fig. 11a). The pressure, and the standard deviaEon of pressure (which 

loosely represent the pressure gradient), are the primary driving force of the flux of fluid and 

solutes in the domain, meaning it should have significant correlaEon with biomass with or without 

the speed-based biomass decay augmentaEon. Vx shows a small negaEve correlaEon with 

biomass, indicaEng that an increase in Vx leads to a decrease in biomass concentraEons. Thus, 

there is some indicaEon that the speed-based biomass decay influences the general 
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spaEotemporal distribuEon of biomass in the hyporheic zone, although by a relaEvely small 

amount.  

The correlaEon between biomass and porosity is also interesEng. One intuiEve way to 

think about this relaEonship is that they should have a posiEve correlaEon between each other 

because a larger porosity means more pore space in which biomass can grow. However, biomass 

growth causes a decrease in local porosity meaning the correlaEon may be negaEve. The results 

of our general temporal trends, as well as the correlaEon heatmap, show a negaEve relaEonship, 

implying that for the simulaEons in this chapter, the main relaEonship is defined by the growth of 

biomass causing a decrease in porosity. However, this largely has to do with the density of the 

biomass, which we defined as 10g/L. A greater density would mean less volume change per mol 

of bacteria produced. 

The correlaEon heatmap (Fig. 12a) also reveals important relaEonships for chromium. A 

large majority of correlaEons between chromium and other values have magnitudes below 0.1. 

The only significant correlaEons (≥0.1) that chromium has are with biomass (-0.18), electron 

donor (-0.15), porosity (0.10), and 𝜆@ (0.16). As we saw from the sensiEvity analysis of the impact 

of 𝜆@ on chromium concentraEons (Fig. 12e), a higher value of 𝜆@ leads to higher amounts of 

chromium concentraEon as most of the molasses is taken up to grow biomass but a large number 

of mols are required to produce one mol of biomass. The correlaEon with porosity is also related 

to its correlaEon with biomass. As biomass concentraEons increase, they reduce the local porosity 

where growth is high. Porosity reducEon only happens at a measurable level once biomass 

concentraEons exceed about 1 mol/m3, meaning that porosity reducEon, at least in the case of 

our simulaEons, is almost always associated with a decrease in chromium concentraEons. 
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The PCA (Fig. 13a) and correlaEon heatmap (Fig. 13b) add significant informaEon to the 

feedback cycles of known relaEonships idenEfied in secEon 5.4.1. To update the feedback cycles 

with the most relevant relaEonships idenEfied in our simulaEons, we use the correlaEon matrix 

to idenEfy any correlaEons with magnitude greater than 0.15. To portray the fact that this new 

feedback cycle (Fig. 14) purely represents our simulaEons, we have removed oxygen from the cycle 

and added Cr(VI). Also, to indicate the difference between speed and flow direcEon, we have 

added pressure to the cycle, and changed ”flow vector” to Vx. Finally, we have changed 

permeability to porosity since we didn’t include permeability in the PCA and correlaEon analysis 

due to issues of mulEcollinearity between permeability and porosity. This new feedback cycle 

shows more negaEve relaEonships than posiEve ones. Pressure is responsible for most of the large 

posiEve correlaEons between these key variables. It has large posiEve correlaEons with biomass 

and nutrients, which in turn influence many of the other key simulaEon variables. Based on the 

number of large correlaEons present, biomass and nutrient concentraEons have the greatest 

number of variables with significant relaEonships (4 each), indicaEng the general complexity 

interacEons that impact biomass growth and nutrient concentraEons in the hyporheic zone. 

Compared to the feedback figure designed from knowledge of intuiEve relaEonships (Fig. 

7), the new feedback figure presents many differences. In fact, the only relaEonships that remain 

unchanged are the posiEve correlaEons between nutrients and biomass, and pressure (or flow 

vector) and nutrients, and the negaEve correlaEon between biomass and porosity (or 

permeability). The most surprising deleEon of relaEonships is between temperature and biomass. 

Biomass growth in our simulaEons was explicitly made a funcEon of temperature through the 

Ratkowski funcEon, but this impact was not large enough to results in a high amount of correlaEon 

between biomass and temperature. The most surprising correlaEon sign flip is between porosity 
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and flow speed. IniEally, we assumed porosity would increase as flow speed/pressure increases, 

due to the speed-based decay of biomass (increased flow speeds result in high rates of biomass 

decay which thus leads to increases in porosity). However, our results imply that this speed-based 

biomass decay is not one of the biggest factors impacEng porosity. Rather, porosity is primarily 

controlled by the influx of nutrients that result in increased biomass growth and thus a reducEon 

in porosity, meaning the correlaEon between Vx and porosity is generally negaEve.  

 

 
Figure 13. PCA for physio-chemical features that were varied for each simula3on. The x-axis shows the first 
principal component, the y-axis shows the second principal component, and the color bar represents the 
KMeans clustering output in the 2D PCA space. ED, although the largest correla3ons for biomass are with 
σBio and σED. Cr(VI) shows complete an3correla3on with biomass, which is somewhat surprising given our 
other results that show the dominance of abio3c reduc3on over bio3c reduc3on (Fig. 3). σϕ and ϕ aren’t 
strongly correlated with anything, although the show slight posi3ve correla3on with Cr(VI) and nega3ve 
correla3on with biomass, indica3ng that higher porosity soils may have less reduc3ve capacity. 
 
The most surprising new connecEon is between nutrients and temperature. Given that 

temperature has no correlaEon with biomass, it is somewhat surprising that a negaEve correlaEon 

exists between temperature and nutrients. Most likely, this correlaEon is the result of increased 

nutrient consumpEon by biomass at higher temperatures, although it is unclear why the 

correlaEon is so much stronger for nutrient concentraEons than biomass concentraEons. Overall, 

a. b.
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the complex relaEonships between flow condiEons, nutrient availability, and biomass distribuEon 

provide essenEal insights for designing effecEve bioremediaEon strategies and improving 

predicEve models of HZ processes. 

 
Figure 14. Primary feedback cycles determined from correla3on heatmap of simula3ons of biomass growth 
in the hyporheic zone. A blue arrow signifies a posi3ve correla3on (increase leads to increase), and a red 
arrow indicates a nega3ve correla3on (increase leads to decrease). 
 

5.4.5 Velocity-Based Biomass Decay Sensitivity Analysis 

In addiEon to using sensiEvity analysis to understand the relaEonships between the variables of 

our simulaEons, we also use sensiEvity analysis to illustrate the impact of changing the parameters 

of our velocity-based biomass decay equaEon. Specifically, we show the spaEal distribuEons at 

t=5400 hours for biomass (Figs. 15a-15f) and Cr(VI) (Figs. 15g-15l) for the situaEons of the 

calibrated decay parameters, no decay, high 𝛽, low 𝛽, high α, and low α. The spaEal distribuEons 

for biomass generally show that biomass concentraEons, as well as the spaEal extent of the 

biomass plume, are highly dependent on the velocity-based biomass decay parameters. The 
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Nutrients

Temperature
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simulaEon with no decay has the highest concentraEons of biomass, followed by the 𝛽 = 1.2 

simulaEon, then the α = 2 × 10−4 simulaEon. The α = 2 × 10−10 simulaEon shows essenEally no 

difference from the calibrated simulaEon, and the 𝛽 = 0.4 simulaEon shows much lower 

concentraEons than the calibrated simulaEon. For the case of no decay, the spaEal distribuEons 

aren’t very different from those of the calibrated decay, but the low beta case has a dramaEcally 

different spaEal distribuEon. The Cr(VI) distribuEons follow the same paZerns as the biomass, 

except the no decay, α = 2 × 10−4 and 𝛽 = 1.2 simulaEons show less chromium (or more Cr(VI) 

reducEon) than the other simulaEons. 

We also show the spaEal distribuEons of porosity (Fig. 15m) and Vx (Fig. 15n) to gain 

deeper insight into the spaEal distribuEons of biomass and Cr(VI). The spaEal distribuEon of 

biomass for the calibrated decay parameters (Fig. 15a) are largely determined by the low-porosity 

area at x=250, y=50 and the high porosity zone at x=175, y=80. Decay is highest where fluid speed 

is highest, which is in the corners of the simulaEon and the low-porosity zones in the middle and 

leS side of the domain (Fig. 15n). Unsurprisingly, these are the areas where we see the greatest 

amount of difference from the simulaEon with calibrated parameters. Specifically, the no decay 

(Fig. 15b) and 𝛽 = 1.2 (Fig. 15e) simulaEons for biomass show much greater biomass 

concentraEons in the corners and middle high-porosity area of the domain compared to that of 

the calibrated decay simulaEon. 

Surprisingly, although our general results (Fig. 10) show increased biomass results in a 

relaEve decrease in Cr(VI) reducEon, we observe the opposite trend here. Looking at the Eme 

series outputs for the sensiEvity analysis can help clear this confusion (Fig. 16). For biomass (Fig. 

16a) and chromium (Fig.  16b), the Eme series plots show the relaEve differences highlighted by 

the spaEal distribuEon plots.  The Eme series plots for molasses (Fig. 16c), on the other hand, 
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shows very liZle difference due to changes in the velocity-based biomass decay parameters. Thus, 

we see that for each case of different parameter values, the same amount of molasses is 

consumed by biomass (besides the case of 𝛽 = 0.4). Thus, greater biomass concentraEons result 

in greater chromium reducEon, since each simulaEon has a relaEvely equal amount of abioEc 

reducEon. In other words, the increases/decreases in bioreducEon due to parameter changes in 

the velocity-based biomass decay equaEon don’t result in large decreases/increases in abioEc 

reducEon. Overall, this sensiEvity analysis of the novel speed-based biomass decay model 

demonstrates its generally small impact (besides the case of 𝛽 = 0.4) on biomass distribuEon and 

chromium reducEon. For 𝛽 = 0.4, which represents a weakly adhesive biofilm in which the bacteria 

are poor iniEal surface colonizers, we see biomass concentraEons may be dramaEcally reduced. 

The results highlight the importance of accurately represenEng biofilm dynamics in response to 

hydrodynamic condiEons, which can substanEally influence the overall effecEveness of 

bioremediaEon processes in the HZ. 

 

5.5 Conclusions 

This study provides valuable insights into the complex dynamics of biomass growth and chromium 

reducEon in the hyporheic zone. Through a series of sophisEcated simulaEons and comprehensive 

analyses, we have demonstrated the intricate interplay between various physio-chemical features, 

including flow characterisEcs, nutrient concentraEons, temperature, and permeability. Our novel 

velocity-based biomass decay model, incorporated into PFLOTRAN, offers a more nuanced 

representaEon of biofilm dynamics in response to hydrodynamic condiEons. This advancement 

allows for more accurate predicEons of biomass distribuEon and its impact on contaminant 

reducEon processes. Key findings from this study include: 



 

 
208 

• The idenEficaEon of abioEc reducEon as the dominant process in chromium remediaEon 

(for situaEons with 𝐷1 ≥ 1). 

• The idenEficaEon of biomass growth as the primary process controlling the spaEal 

distribuEons of remediaEon hotspots, especially for situaEons with 𝐷1 ≤ 1. 

• The quanEficaEon of relaEonships between biomass concentraEon and porosity, 

providing a useful predicEve tool for future modeling efforts. 
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Figure 15. Spa3al distribu3ons of biomass (a-f) and chromium (g-l) at t = 5400 hours for the calibrated decay 
values (a & g), no decay (b & h), α = 2 × 10−4 (c & i), α = 2 × 10−10 (d & j), 𝛽 = 1.2 (e & k), and 𝛽 = 0.4 (f & l). 
All figures besides a and g show the difference between the calibrated decay and the respec3ve sta3s3c. 
Spa3al distribu3ons of porosity at t = 0 (m) and Vx averaged over all t (n) are used to further understand the 
differences in simula3on output due to changes in the velocity-based biomass decay parameters. The top 
colormaps represents the concentra3ons shown in the calibrated decay plots (a & g), and the bo`om 
colormaps represent the feature (biomass or chromium) concentra3on of the calibrated decay minus the 
feature concentra3on for the par3cular change in parameter value. 
 

 
Figure 16. Time series plots (averaged over both spa3al dimensions) for biomass (a), chromium (b), and 
molasses (c) for simula3ons with the calibrated decay parameters (α = 2 × 10−7, 𝛽 = 0.8), no decay, α = 2 × 
10−7, α = 2 × 10−10, 𝛽 = 1.2, and 𝛽 = 0.4. Differences due to parameter changes are rela3vely small except for 
𝛽 = 0.4, and are largest for biomass, then chromium, then molasses. 
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• The revelaEon of complex feedback mechanisms between flow condiEons, nutrient 

availability, and biomass growth, highlighEng the importance of considering spaEal 

heterogeneity in hyporheic zone modeling. 

• The demonstraEon of the impact of speed-based biomass decay on overall system 

behavior and contaminant reducEon efficiency, showing that the impacts are largely 

negligible except in cases of extremely high fluid speeds or weakly adhesive bacteria (𝛽 ≤

0.4) that make poor iniEal surface colonizers.  

These results have far-reaching implicaEons for bioremediaEon strategies in contaminated 

aquifers. By providing a more accurate representaEon of biomass dynamics and contaminant 

reducEon processes, this study enables beZer predicEon and opEmizaEon of remediaEon efforts. 

However, we also recognize that this study contains many limitaEons. For example, we 

acknowledge that a more robust equaEon for speed-based biomass decay should be derived from 

first principles (such as conEnuity and mass balance) and incorporate a variety of upscaled 

parameters, but this was beyond the scope of our work, especially considering the complexiEes 

of integraEng such an equaEon into PFLOTRAN. Thus, we opted to solve this problem through a 

method of adapEng a framework already present in PFLOTRAN and calibraEng fikng parameters 

with pore-scale research of biofilm decay as a funcEon of shear stress. This chapter also reflects 

one of the primary goals to improve bioremediaEon. Through improvements in our understanding 

of abioEc and bioEc chromium reducEon, and the sensiEvity analysis of the impact of speed-based 

biomass decay on chromium reducEon, we provide valuable insights and tools that can help 

improve contaminant remediaEon efforts. 
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Future research should focus on validaEng these findings with field studies and exploring 

the implicaEons for bioremediaEon strategies in diverse hyporheic zone environments. 

AddiEonally, the integraEon of this advanced biomass decay model with other reacEve transport 

processes could further improve our understanding and predicEon of complex subsurface 

biogeochemical dynamics. 

While this chapter is not directly influenced by any of the previous three chapters, it seeks 

to directly improve microbe-mediated reacEve transport methods, which is the fundamental and 

overall goal of this dissertaEon. Furthermore, this chapter uses micro-scale physics to examine the 

transport of biomass at the Darcy scale, thus adding breadth to this dissertaEon in terms of its 

potenEal applicaEons to microbe-mediated reacEve transport. 
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Chapter 6: STAMNet - A Spatiotemporal Attention Module and Network 
for Upscaling Reactive Transport Simulations of the Hyporheic Zone 

 

6.1 Abstract 

ReacEve transport (RT) simulaEons are important tools for understanding and predicEng 

phenomena in the subsurface. However, RT is computaEonally intensive and complex simulaEons 

can be numerically unstable. Here, we present STAMNet, a low-parameter aZenEon-based suite 

of neural nets that can upscale and upsample reacEve transport simulaEons, applied to example 

problem of biomass growth in the hyporheic zone. We show that a simple MLP offers 30x speedup 

over standard mulEphysics RT simulaEons and can accurately (90% 𝑅2) predict the output of 

mulEple variables of a 1x20 meter RT simulaEon by using the output from a 1x2 meter simulaEon 

as input. We add efficient channel aZenEon to our opEmized MLP which significantly improves 

the mean average error but doesn’t impact the 𝑅2. We further develop a novel spaEotemporal 

aZenEon module (STAM), which results in significant improvements both in mean square error 

and 𝑅2 (92.5%). Finally, we present a network architecture that uElizes STAM to accurately (99.9% 

𝑅2) upsample simulaEons in two dimensions. Specifically, our model allows for the 2x upsampling 

of simulaEons in the 𝑥 and 𝑦 dimensions to convert a coarse-grained input into a fine-grained 

output. These models have potenEal use for Monte-Carlo-style RT simulaEons and the work 

presented serves as a proof-of-concept for accurate predicEon of large sets of spaEotemporal 

outputs. 

 
6.2 Introduction 

In the vast realm of environmental science, the hyporheic zone (HZ) stands out as a 

complex interface that has captured the aZenEon of researchers for decades [1-3]. This subsurface 
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region, generally defined as the interface between river water and groundwater, hosts a myriad of 

complex interacEons [4], with biofilms serving as a central character influencing broader 

hydrological and geochemical cycles [5]. 

MulEphysics simulators that use analyEcal and numerical methods to solve systems of 

equaEons that describe hydro-biogeochemical interacEons in the subsurface environments, also 

known as reacEve transport (RT) simulators, such as PFLOTRAN [6], STOMP [7], and CrunchFlow 

[8] are generally considered the gold standard for simulaEons of phenomena in the HZ. However, 

large scale RT simulaEons, and Monte-Carlo-type invesEgaEons of RT simulaEons, have high 

computaEonal complexity and cost which are sensiEve to convergence criteria [9-11] causing 

numerical instability and challenges in supporEng hydro-biogeochemical research efforts.  

Several recent studies in the field of computer science have shown that accurate mulE-

physics simulaEon emulaEon is possible with deep learning [12-16]. Thus, to alleviate the common 

shortcomings of RT simulators, some studies have aZempted to apply these emulaEon 

frameworks to RT data [17-22]. Laloy and Jacques presented some of the earliest studies that 

looked into RT emulaEon with deep learning. They found deep neural networks (DNNs) 

outperform polynomial chaos expansion networks for the predicEon of a target RT variable given 

some input variables of the RT Emeseries. Although emulaEon is sEll a popular topic, much of the 

current research in this domain also seeks to upscale micro and pore-scale models to the 

macro/conEnuum scale. Wang and Bakato (2024) provide a comprehensive framework to upscale 

RT in fracture- matrix systems. Their framework uses a combinaEon of tradiEonal RT algorithms 

with a recurrent neural network (RNN) to capture the impact of small-scale features, which they 

show results in improved accuracy compared to a pure macroscale model. You et al. (2024) used 

convoluEonal neural networks (CNNs) to upscale pore-scale simulaEons to conEnuum-scale 
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simulaEons. They found that the effecEve surface area and effecEve diffusion coefficient could be 

predicted with high accuracy, but permeability is difficult to predict. These frameworks represent 

significant advances in the field of RT modeling, although they suffer from a lack of easy integraEon 

with current popular methods, and are constrained in their scope. General models that can be 

easily implemented would increase access of reacEve transport simulaEon tools to a larger 

community of researchers.  

In this chapter, we provide a deep-learning-based method for the upscaling and 

upsampling of RT simulaEons. We chose to model biomass growth in the hyporheic zone due to 

the complexity of the simulaEons and its importance for many biogeochemical funcEons they 

serve. Furthermore, simulaEons of biomass growth result in outputs at large scales that may be 

very different than outputs at small scales, which necessitates a more careful upscaling than a 

simple interpolaEon or polynomial fit. In addiEon, we consider our simulaEons of biomass growth 

in the hyporheic zone to be a proxy for general reacEve transport modeling, since the biomass 

growth simulaEons take advantage of most of the modeling capabiliEes in PFLOTRAN.  

One of the primary moEvaEons for this chapter comes from the high computaEonal Eme 

requirements experienced while generaEng experiments for chapter 5. Given that these 

simulaEons would crash about 15% of the Eme, and were more likely to crash for larger scale 

simulaEons, our generaEon of 344 simulaEons took over one month of constant 12-core computer 

use. Thus, the primary goal of this chapter to provide a tool capable of speeding up the process of 

generaEng many simulaEons at large scales.  

The upscaling task we try to improve in this chapter is specifically the predicEon of the 

spaEotemporal output for a 1x20 meter simulaEon given the output of a 1x2 meter simulaEon as 

input. To achieve this task, we use a subset of the simulaEons featured in chapter 5 for training 
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and tesEng. We test the performance of an opEmized MLP, the MLP + efficient channel aZenEon, 

and the MLP + our spaEotemporal aZenEon module, STAM, which we find to generally outperform 

the other models. This model allows for a 30x speedup in the generaEon of large-scale simulaEons 

with an 𝑅2 of the predicted mean Eme series of 0.925. We also devise an opEmized linear 

architecture that incorporates STAM for the task of upsampling, which takes a 1x2 meter 

simulaEon with a resoluEon of 100 voxels/m as input and outputs a 1x2 meter simulaEon with a 

resoluEon of 400 voxels/m. 

The work presented in this chapter is an enhanced version of the in-review arEcle: 

“Berghouse, M. & Parashar, R. STAMNet–- A SpaEotemporal AZenEon Module and Network for 

Upscaling ReacEve Transport SimulaEons of the Hyporheic Zone. Computers and Geosciences. 

2025.” This chapter adds to the work currently in review by exploring connecEons with chapters 

4 and 5 of this dissertaEon and expanding the discussion on general contribuEons to microbe-

mediated reacEve transport.  

 

6.3 Methods 

This chapter uses mulEphysics simulaEons to explore biomass growth in the HZ, and deep learning 

models to upscale and upsample these simulaEons. The simulaEons used in this chapter represent 

a subset of the simulaEons featured in chapter 5. While chapter 5 uses 344 simulaEons, many are 

not separated into low and high scale pairs, and some of the pairs show very liZle difference 

between outputs at low and high scales. We originally trained and tested models on all possible 

simulaEon pairs, but we found that performance of STAMNet was not significantly beZer than an 

opEmized MLP without aZenEon since a majority of the simulaEons were easy to predict. Thus, 

we arbitrarily dropped some simulaEons with small differences between low and high scale, 
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resulEng in 138 simulaEons (out of the 344 total generated for chapter 5) used to train and test 

STAMNet-Upscale. In this secEon, we describe the boundary condiEons and parameters used for 

our simulaEons, and the model architectures and training/tesEng procedures used for our 

upscaling and upsampling frameworks.  

 

6.3.1 Simulations of the Hyporheic Zone 

6.3.1.1 General Descrip=on of Simula=ons 

Our simulaEons are based in PFLOTRAN, a mulE-physics reacEve transport simulator developed 

by mulEple naEonal laboratories [6]. PFLOTRAN represents a state-of-the-art computaEonal 

framework for simulaEng coupled subsurface flow and reacEve transport processes across 

mulEple spaEal and temporal scales. This massively parallel reacEve transport code integrates 

sophisEcated numerical methods to resolve mulE-phase and hydro-biogeochemical interacEons. 

The code’s architecture enables the simulaEon of various subsurface processes, including density-

dependent flow, variable saturaEon condiEons, and non-isothermal phenomena, alongside 

comprehensive biogeochemical reacEons such as aqueous complexaEon, mineral 

precipitaEon/dissoluEon kineEcs, surface complexaEon, ion exchange, and microbially mediated 

transformaEons. As discussed in the introducEon, we seek to use this reacEve transport simulator 

to model biomass growth in the hyporheic zone. To this end, we have specifically adapted the 

Chrotran [22] version of PFLOTRAN to represent growth of biomass in the hyporheic zone at the 

Darcy scale. Chrotran defines biomass growth as a funcEon of electron donor (ED) concentraEon 

through simple Monod kineEcs. It uses bioEc and abioEc reacEons to model Cr(VI) reducEon, 

defines a mobile-immobile mass transfer system for biomass and ED, and allows for bioclogging 
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modeling capabiliEes via the dependence of porosity and permeability on biomass concentraEon. 

For a full descripEon of the biomass growth model, please refer to the original Chrotran paper.  

The simulaEons described in this paper were created for the purpose of modeling complex 

interacEons in the hyporheic zone. We simulate different flow condiEons, permeability condiEons, 

and concentraEon inputs to train our model on a general representaEon of simulaEons of biomass 

growth in the hyporheic zone. The simulaEons all contained high levels of nutrients that allowed 

for relaEvely linear growth throughout the Eme frame of the simulaEons (up to 228 days). For 

cases with low concentraEons of nutrients, biomass growth leveled off more towards the end of 

the simulaEons. We chose to not invesEgate nutrient-limited scenarios because we observed less 

differences between small scale and large-scale simulaEons in cases of nutrient limitaEon, 

meaning a model that allows mapping between the two would be less useful. Thus, we focused 

on relaEvely high-nutrient simulaEons which show significant differences between small scale and 

large-scale outputs.  

6.3.1.2 Boundary Condi=ons 

For the baseline, we simulate a 1 meter (in verEcal, or direcEon of hyporheic flow) by 2 meter 

longitudinal (in direcEon of river/groundwater flow) slice of a syntheEc hyporheic zone 

represented by 100 by 200 voxels (dx = dy = 0.01 m). The top and boZom boundaries (1 m 

difference) respecEvely represent the surface and boZom-HZ pressures (which controls the 

amount and direcEon of verEcal flow), and the leS and right boundaries (2m difference) represent 

the pressure gradient in the longitudinal direcEon, thus controlling the vector of groundwater flow 

(also referred to here as the horizontal flow). The horizontal pressure gradient is constant over the 

duraEon of any given simulaEon, and the verEcal pressure gradient for any given simulaEon is 

derived from three different sets of in-situ hyporheic flux data [23-25] (Chapter 5, Figure 5). As 
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discussed in further secEons of the methods, all simulaEon variables, including the horizontal and 

verEcal pressure gradients, take on different values for different simulaEons. From these base Eme 

series, we introduce random variaEons (large variaEons for the "high speed" Eme series and small 

variaEons for the other Eme series in Figure 5 of chapter 5) to increase the variability in potenEal 

flow condiEons for our models to be trained on. The base set of pressure gradients for the 

horizontal flow was determined a range of realisEc groundwater flow rates. Both horizontal flow 

(𝑉𝑦) and verEcal flow (𝑉𝑥), and transport, are regulated by Dirichlet boundary condiEons. 

The primary moEvaEon of this study is to develop upscaling and upsampling methods for 

RT simulaEons using deep learning (Fig. 1). Thus, we generated pairs of simulaEons for training 

that are idenEcal in every way except scale (for upscaling) or resoluEon (for upsampling). As 

discussed above, the baseline simulaEons represent a 1 meter by 2 meter slice of the HZ. For the 

upscaling task, all models use the baseline 1x2 meter simulaEon as input to predict a 1x20 meter 

simulaEon. For the upsampling task, all models use the baseline 1x2 meter simulaEon with dx = 

dy = 0.01 m as input to generate a 1x2 meter simulaEon with dx = dy = 0.005 m. All upscaling 

simulaEons ran for 228 days (114 Emesteps) and all upsampling simulaEons ran for 86 days (43 

Eme steps). It should be noted that for the gaining and losing simulaEons the in-situ hyporheic 

flux data (Chapter 5, Figure 5) only extended to 170 days. We therefore applied constant flow 

boundary condiEons to the last 58 days. The upscaling simulaEons were also different from the 

upsampling simulaEons in that they are based on heterogeneous permeability distribuEons 

whereas the upsampling simulaEons contain homogeneous permeability distribuEons. Sample 

permeability fields for the upscaling simulaEons are given in Figure 6 of chapter 5. 
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Figure 1. Sample ground truth snapshots of the 1x simula3on (a) and 10x simula3on (b) outputs. From top 
to bo`om, the snapshots represent normalized biomass concentra3ons at 𝑡 = 40, 80, 120, and 160 days. 
The primary mo3va3on of this work is to provide a model that allows accurate mapping from 1x to 10x. 
 
 
 
Table 1 Descrip3on of variables and their ranges of possible voxel-specific values used in the simula3ons. 
From leP to right, these variables signify biomass, electron donor (molasses), and chromium concentra3ons, 
ver3cal velocity, horizontal velocity, pressure, temperature, porosity, permeability, biomass crowding 
parameter, and biomass growth parameter. 
 

Variable B 

G𝒎𝒐𝒍
𝒎𝟑 H 

ED 

G𝒎𝒐𝒍
𝑳
H 

Cr(VI) 

G𝒎𝒐𝒍
𝑳
H 

Vy 
(m/hr) 

Vx 

(m/hr) 
P (Pa) T 

(℃) 
𝝓 k 

(m2) 
𝜶 𝝀𝒃 

Min 1e-10 1e-20 1e-20 -632 -486 -1214 4.8 1e-4 1e-15 0.5 1e-5 

Max 765 5.5e-3 7.6e-3 671 651 7099 24.9 0.6 1.1e-9 3.0 1e-4 

Mean 58 8.1e-6 1.4e-5 -5.8e-2 -1.4e-2 786 11.5 0.13 2e-10 2.8 1e-5 

 
 
6.3.1.3 Simula=on Variables 

To train and test our model on a large variety of simulaEons, we added random variaEons to each 

of the variables of the simulaEons. The primary simulaEon variables, as well as their voxel-specific 

min, max, and mean values across all simulaEons, are given in Table 1. The average spaEal 

distribuEons (in Eme and across all simulaEons) of the output features of the 1x2 meter upscaling 

simulaEons are shown in Figure 2. Molasses, biomass, and Cr(VI) all have similar distribuEons due 

to their coupling via chemical equilibria. In addiEon to the features listed in Table 1 and Figure 2, 

less consequenEal features that varied between simulaEons included 𝑆𝑐 , 𝑆𝑑, and 𝜆𝑐 , which can all 

be classified as biomass growth parameters. 

 

a. b.
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6.3.2 Deep-Learning-Based Upscaling 

6.3.2.1 Model Architectures 

Our iniEal model selecEon process was to look for published architectures that have been shown 

to be effecEve for spaEotemporal data [26-28]. However, our input and output tensors have shape 

[b, t, h, w], where b is batch size, t is the temporal dimension, and h and w are spaEal dimensions. 

Thus, given the irregular shape of our inputs ([b,114,100,200]), and the large shape of our outputs 

([b,114,100,2000]) for the upscaling task, we found that these published spaEotemporal models, 

which are oSen used for classificaEon or object detecEon/tracking in video data, either were too 

large, or would not work well with our input shape. Thus, we moved to a smaller and simpler 

 
Figure 2. Mean spa3al distribu3ons for all simula3ons for (going from leP to right and top to bo`om) 𝑉𝑥 
(Darcy velocity in the ver3cal direc3on, measure in meters/hr), 𝑉𝑦 (Darcy velocity in the direc3on of flow 
parallel to the river), pressure (Pa), temperature (◦C), porosity, permeability (𝑚2 ), biomass (mol/𝑚3 ), 
molasses (the electron donor, measured in mol/L), and Cr(VI) (mol/L). 
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MLP-based structure of our own design (Fig. 3a). This architecture takes in a 4D input (including 

batch size) and passes it through a series of linear layers with nonlinear acEvaEon funcEons to 

progressively increase the size of the final dimension to the desired number. The best number and 

sizes of linear layers, and the best acEvaEon funcEon, were determined via automated 

hyperparameter tuning with Optuna [29]. ASer opEmizing the structure of the MLP, we used 

ablaEon experiments with different variaEons of the first layer to determine the best method for 

iniEal upscaling (Table 2).  

For both the upscaling and upsampling models, we also invesEgate the impact of aZenEon 

on model performance. Specifically, we integrate efficient channel aZenEon (ECA) [30], and a 

novel aZenEon method (STAM), into the opEmized MLP structure aSer the first layer (Figs. 3b & 

3c). Our efficient channel aZenEon method uses 1D convoluEon in the temporal dimension, 

allowing the model to focus on more relevant temporal features. STAM uses convoluEons in 

mulEple dimensions (fully described in secEon 6.3.2.2) to improve focus on task-relevant spaEal 

and temporal features. The resulEng architecture with the inclusion of STAM is called STAMNet. 

For the rest of the paper, we refer to the upscaling version of STAMNet as STAMNet-Upscale, and 

the upsampling version of STAMNet as STAMNet-Upsample. STAMNet-Upsample has a different 

architecture than STAMNet-Upscale because the task of upsampling requires a doubling in size for 

both of the spaEal dimensions (Fig. 3c). At a basic level, STAMNet-Upscale increases the last spaEal 

dimension by 10x, whereas STAMNet-Upsample increases both spaEal dimensions by 2x. 

6.3.2.2 Spa=otemporal A^en=on Module (STAM) 

The STAM architecture (Fig 4) applies aZenEon across mulEple dimensions of the input tensor. It 

consists of four main branches (M1 - M4) that process the input in different permutaEons, allowing 

the network to capture dependencies across various dimensions.  
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Figure 3. Model architectures for the op3mal MLP (a), STAMnet-Upscale (b), and STAMNet-Upsample (c). 
Each block represents an intermediate output stage, and the arrows represent the layers of the model. The 
op3mal MLP (a) and STAMNet-Upscale (b) take inputs of shape [b, t, h, w] and return outputs of shape [b, 
t, h, 10w]. STAMNet-Upsample takes inputs of shape [b, t, h, w] and returns outputs of shape [b, t, 2h, 2w]. 
STAM is a modular a`en3on method that returns an output with the same shape as the input. The 
architecture of STAM is given in Figure 5. For the STAMNet-Upsample (c), permuta3ons are used aPer the 
2nd and 4th linear layers to have the appropriate dimensions. This model takes an input of shape [b, t, h, 
w] and gives an output of shape [b, t, 2h, 2w]. 
 
 

The four aZenEon branches can be summarized as follows - M1 processes the input along 

the temporal dimension through convoluEonal layers and reduces the size of the width dimension 

through a linear layer, which results in an aZenEon map of shape [b, t, h, 1]. M2 processes the 

input along the width dimension through convoluEonal layers and reduces the size of the Eme 

dimension (or the horizontal length being upscaled), which results in an aZenEon map of shape 

[b, 1, h, w]. M3 processes the input along the height dimension and results in an aZenEon map of 

shape [b, t, h, 1], and M4 processes the input along the temporal dimension and results in an 

a.
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aZenEon map of shape [b, t, 1, w]. M3 has a similar structure to M1 (and the same output shape) 

except it processes the height dimension through convoluEon instead of the weight dimension. 

Each branch follows a similar paZern: Conv2D (5x5) → LeakyReLU → Conv2D (1x1) → LeakyReLU 

→ Linear → Sigmoid. The output of each branch is mulEplied with the input and the resulEng 

product is added back to the input, creaEng two levels of residual connecEons. The outputs from 

all branches are then averaged and passed through a sigmoid acEvaEon funcEon and mulEplied 

and then added to the input to get the final aZenEon map, thus creaEng addiEonal residual 

connecEons.  

STAM incorporates several architectural features that enhance its ability to map 

spaEotemporal relaEonships. By processing the input tensor along different dimensions, it 

captures complex spaEal-temporal dependencies that simpler. aZenEon mechanisms or non-

aZenEve models might overlook. The combinaEon of 5x5 and 1x1 convoluEons enables STAM to 

integrate both local and global context within each dimension [31-33]. Through residual 

connecEons and a final aggregaEon step, the model adapEvely refines features, highlighEng 

important paZerns while aZenuaEng less relevant informaEon [34, 35]. The incorporaEon of 

LeakyReLU acEvaEons and dropout (in M2) introduces non-linearity and regularizaEon, potenEally 

enhancing the model’s generalizaEon capabiliEes [36]. Furthermore, by processing the input 

through different permutaEons, STAM generates complementary aZenEon maps, effecEvely 

capturing diverse data paZerns [37]. Lastly, the addiEon of the input to the aZenEon-weighted 

features preserves original informaEon while facilitaEng the learning of residual representaEons, 

thus providing a comprehensive approach to spaEotemporal feature extracEon and refinement. 
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Figure 4. Architecture of the Spa3otemporal A`en3on Module (STAM). The model consists of four separate 
a`en3on arms. Each a`en3on arm has two 2D convolu3onal layers and one linear layer followed by sigmoid 
ac3va3on, then mul3plica3on and addi3on with the original input. The a`en3on arms differ in their shapes, 
which results in feature maps that are able to capture complex cross-dimensional rela3onships. The 
a`ended feature maps from each a`en3on arm are then averaged, passed through a sigmoid layer, 
mul3plied by the input and finally added to the input to get the final output of the modular a`en3on 
method. 
 
6.3.2.3 Training, Valida=on, and Tes=ng Process 

Although the RT simulaEons contain mulEple output features (Fig. 2), we chose to focus on 

upscaling biomass, Cr(VI), and molasses. All other variables either have liZle variaEon between 1x 

and 10x scale simulaEons (such as temperature and pressure) or can be easily upscaled through 

physics-based methods (such as flow [38-40] and permeability [41]). With about 48 GB of VRAM, 

models could be developed to upscale all three variable at once. However, we were restricted to 

24 GB of VRAM, and at this amount of VRAM we weren’t able to effecEvely train mulE-feature 

models. Thus, we trained a suite of models that separately upscale our three target variables. 

For the upscaling task, 48 pairs of simulaEons were used for training, 8 pairs of simulaEons 

were used for validaEon, and 13 pairs of simulaEons were used for tesEng. ValidaEon scores were 
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used to opEmize hyperparameters and determine layer placement within STAMNet. Once the best 

model architectures were determined through hyperparameter opEmizaEon and ablaEon studies, 

the validaEon data was also used for training, resulEng in 56 pairs of training simulaEons and 13 

pairs of tesEng simulaEons for the final calculaEon of scores. We used the AdamW opEmizer, 

dropout of 0.2 aSer the first linear layer (or aSer the aZenEon layer for models with aZenEon), 

and a learning rate (lr) between 1.6e-4 and 4.6e-4 with a cosine annealing warm restarts scheduler. 

For biomass upscaling we used a lr of 1.6e-4 and trained for 25 epochs, for biomass upsampling 

we used a lr of 4.6e-4 and trained for 900 epochs, and for ED and CR(VI) upscaling we used a lr of 

3.0e-4 and trained for 110 epochs. The number of epochs used for each feature was determined 

based on when the validaEon set stopped showing improvement. For all biomass upscaling 

experiments, we trained and tested each model type 14 Emes and report the averages of each 

performance metric (MSE, MAE, and 𝑅2). Each metric is calculated between all elements of the 

output tensor (x) and the ground truth (y). For example, the MAE is the sum of errors between 

each element of x and y divided by the number of elements in x and y. We also plot the mean Eme 

series and spaEal distribuEons for each model to provide a visual understanding of the predicEon 

errors. Specifically we use Eme series to invesEgate the average temporal distribuEons of the 

predicEons of biomass, molasses (ED), and chromium for a simple interpolaEon model, an 

MLP+ECA model, and our STAMNet model. The spaEal distribuEons are presented in two ways. 

The blue-green-yellow spaEal distribuEons show the absolute concentraEons of the feature in 

quesEon, while the blue-white-red spaEal distribuEons show the difference between the ground 

truth and the predicEon for that parEcular model. For this visual analysis, we use a simple 

ensemble of the best-scoring variaEons of each model. 
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For the upsampling task, 40 pairs were used for training, 8 for validaEon, and 12 for tesEng. 

ASer opEmal model structures were determined, the 8 simulaEon pairs used for validaEon were 

included in the training set, resulEng in a final 48 simulaEon pairs for training and 12 simulaEon 

pairs for tesEng. All results for the upsampling task are a comparison of the average of 8 separately 

trained and tested models. For both upscaling and upsampling, the loss funcEon used for training 

was 𝑀𝑆𝐸 + 0.6 × 𝑀𝐴𝐸, which was used over a standard MSE loss funcEon as we found that only 

using MSE tends to result in a higher degree of overfikng. Furthermore, we found Huber loss to 

not weight the MAE strongly enough, which resulted in decreased MAE and 𝑅2 scores. 

 

6.4 Results 

6.4.1 Ablation Experiment 

To determine the best simple method of upscaling, we experimented with three model variaEons 

(Table 2). The structure of the linear model is shown in Figure 3a. This structure was determined 

through opEmizaEon of validaEon scores via Optuna. In the linear model, the first layer is a linear 

layer that increases the size of the final dimension of the input by 10x. To try and reduce the 

number of parameters, or have roughly the same number of parameters with a deeper first layer, 

we tried to replace the first linear layer with a 10x interpolaEon layer and a 20x interpolaEon layer. 

The reasoning behind this is that we had observed simple interpolaEon oSen allows for reasonably 

accurate upscaling compared to other simple models, so we thought it might be a parameter-

efficient way to upscale the final dimension. The 10x interpolaEon layer takes the input of shape 

[b, t, h, w] and outputs a tensor of shape [b, t, h, 10w], while the 20x interpolaEon layer takes the 

same shape of input and outputs a tensor of shape [b, t, h, 20w]. Thus, the interpolaEon 10x model 

has the same structure as the linear model besides the 1st layer, which is instead a 10x repeat 
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interleave layer. Similarly, the 20x interpolaEon model has an iniEal layer that interpolates the final 

dimension of the input to 20x size. Because the linear layer of the opEmal MLP upscales the final 

dimension to 10x, the 20x model has a slightly different structure of second layer since it takes an 

input of [b, t, h, 20w]. The linear model performed best in the MAE and R2 metrics. Thus, although 

interpolaEon allows for model parameter savings, it is not much, and the reduced accuracy is not 

worth these savings in most cases, so we developed STAMNet on top of this opEmal linear 

architecture. 

 
 
Table 2. Abla3on experiments for biomass upscaling to determine the best method of increasing dimension 

size. MAE is given in >.?
>#  and MSE is given in G>.?

># 	H
*
. 

 Linear Interpolation (10x) Interpolation (20x) 
MSE 2508 2471 2471 
MAE 21.62 22.25 22.02 

R2 0.897 0.880 0.875 
 
 
 
6.4.2 STAMNet-Upscale Performance 

6.4.2.1 Biomass Upscaling 

The results of our upscaling models for the biomass predicEon task are given in Table 3. The 

interpolaEon model here is different than the interpolaEon models used in the ablaEon 

experiments. In the ablaEon experiments, the interpolaEon was used as an iniEal layer of a model 

with mulEple linear layers and an acEvaEon funcEon aSer the interpolaEon. For the interpolaEon 

model in table 3, there are no linear layers aSer the interpolaEon. In other words, it is just a simple 

interpolaEon of the final dimension, which is the most simple and rapid way to generate 

reasonably accurate results for the task of upscaling as defined in this paper. The simple MLP is a 

one-layer MLP that increases the size of the final dimension by 10x. The opEmal MLP is the fully 
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opEmized MLP structure given in Figure 3a. The structure of STAMNet, our proposed best-

performing model, can be seen in Figure 3c. The MLP+ECA model has the same structure as 

STAMNet, but with the ECA aZenEon module instead of the STAM aZenEon module. 

For all models tested, STAMNet-upscale shows the strongest performance by a staEsEcally 

significant margin for the both MSE and 𝑅2 metrics. Both models with aZenEon modules 

outperform the opEmal MLP, further indicaEng that aZenEon is a useful tool for developing robust 

upscaling model architectures. STAMNet-Upscale performs beZer than the MLP+ECA model, 

indicaEng that cross-dimensional feature refinement offers performance benefits over single 

dimensional (temporal) feature refinement. All trained models perform beZer than simple 

interpolaEon, showing the general benefit to the approach of using deep learning for upscaling of 

reacEve transport simulaEons. 

To further invesEgate the performance of our different models for the task of upscaling 

biomass, we plot the spaEal error (Fig. 5) and the mean Eme series error (Fig. 6). The spaEal errors 

show that the simple interpolaEon (Fig. 5d), the MLP+ECA (Fig. 5c), and STAMNet-Upscale (Fig. 

5b) all fail to capture fine variaEons in the ground truth spaEal distribuEon. Instead, they achieve 

a low MSE/MAE by averaging out the variabiliEes in space. This is to be expected, however. 

Without a method that specifically constrains the spaEal distribuEons of biomass concentraEons, 

the model lacks the ability to predict exactly what the upscaled version will look like, so the model 

just makes an average guess. In other words, the neural nets may learn to approximate the verEcal 

variability in biomass well, since this doesn’t change much between small and large-scale 

simulaEons, but have no ability to predict the horizontal variability in biomass as this may change 

significantly based on scale and more strongly depends on the differences between the small and 

large- scale permeability fields. To compensate for this lack of knowledge, the neural nets make 
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predicEons that represent averages across many horizontal voxels. We experimented with loss 

funcEons to try to add this constraint to the spaEal distribuEon of the outputs, but found it had 

too negaEve of an impact on the outputs of Eme series distribuEons and did not improve the 

accuracy of the spaEal distribuEons (either in exact value or "look") enough to warrant further 

invesEgaEon. Thus, although there are some differences in the spaEal error between different 

models, no model we tested provides an adequate representaEon of physically realisEc spaEal 

variaEons, and more robust techniques are needed to achieve high-fidelity spaEal predicEons. 

 

 
Figure 5: Spa3al error distribu3on of biomass averaged over all test simula3ons and 3me steps. (a) Ground 
truth spa3al distribu3on. (b) Ground truth minus output from STAMNet-Upscale. (c) Ground truth minus 
the MLP+ECA model. (d) Ground truth minus simple interpola3on. (e-h) Zoomed in versions of a-d. These 
figures show that STAMNet has difficulty predic3ng fine spa3al varia3ons but is more accurate than a simple 
interpola3on. 
 

In terms of comparison between the methods, STAMNet-Upscale and the MLP+ECA 

clearly outperform the interpolaEon, which can be beZer seen from the zoomed-in secEons of the 

spaEal error distribuEons (Figs. 5e-5h). There is a very slight difference between error for 

STAMNet-Upscale and the MLP+ECA, but it is essenEally negligible with regards to the overall 

accuracy of the predicEons of spaEal distribuEons. One big difference between the interpolaEon 

and the aZenEon-based neural nets is that the interpolaEon model greatly overcalculates biomass 

e.

g.

f.
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concentraEons, especially near the right boundary of the domain. The right boundary of the 

domain is oSen a source of nutrients and thus a locaEon of dense biomass growth. In the 1x2 

meter simulaEon, these nutrients are able to reach into and cause biomass growth in about half 

of the domain, meaning a simple interpolaEon to the 1x20 meter simulaEon leads to high biomass 

concentraEons that extend too far into the domain. Although we scale up the horizontal flow 

speed (𝑉𝑦) for the 1x20 meter simulaEon, we sEll see that biomass tends to cover a smaller 

horizontal porEon of the domain at larger scales. This is due to a variety of hydro-biogeochemical 

phenomena such as mixing, uptake and dispersion of nutrients, and the amount of space the 

biomass growth can cover given a certain amount of Eme and nutrients. In other words, because 

growth is largest at the domain boundaries due to the influx of nutrients, there is a limit to how 

far this boundary-enhanced growth can extend towards the middle of the domain. The neural 

nets, on the other hand, undercalculates biomass at the boundaries (right, top, and leS) due to 

their tendency to average local variaEons in concentraEon. 

 

 
Figure 6. Biomass 3me series averaged over all upscaling test simula3ons and 3me steps. The blue do`ed 
line corresponds to the 3me series for a simple interpola3on of the input, the red dashed line corresponds 
to the output for STAMNetUpscale, and the green dash-do`ed line corresponds to the ground truth. This 
figure shows STAMNet outperforms simple interpola3on and achieves a high level of accuracy in terms of 
3me series predic3on. 
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In addiEon to our analysis of the spaEal errors of the simple interpolaEon method and 

aZenEon-based models, we also invesEgate their performance in terms of the average Eme series 

predicEon (Fig. 6). Unlike the spaEal distribuEons, all models perform quite well at the task of 

capturing the average upscaled Eme series. Both aZenEon-based models clearly outperform a 

simple interpolaEon, and STAMNet-Upscale slightly outperforms the MLP+ECA model. 

 

 
Figure 7. Spa3al error distribu3on of biomass averaged over low and high-concentra3on test simula3ons.(a) 
Ground truth spa3al distribu3on for low-concentra3on simula3ons.(b) Ground truth minus output from 
STAMNet-Upscale for low-concentra3on simula3ons.(c) Ground truth minus the MLP+ECA model for the 
low-concentra3on simula3ons. (d) Ground truth minus simple interpola3on for low-concentra3on 
simula3ons. (e-h) High-concentra3on versions of a-d. These figures show greater difference between the 
spa3al errors of the interpola3on and our trained networks for low-concentra3on simula3ons than high-
concentra3on simula3ons. 
 

To further refine our general invesEgaEon of the upscaling potenEal of STAMNet for RT 

simulaEons, we split this analysis up to invesEgate performance on high-concentraEon and low-

concentraEon simulaEons. Of the 13 test simulaEons, 5 simulaEons can be categorized as high-

concentraEon (mean biomass greater than 50 mol/m3), and 5 simulaEons can be categorized as 

low-concentraEon (mean biomass less than 15 mol/m3). The spaEal errors for both the low and 

high concentraEons (Fig. 7) generally show the same trends as the spaEal errors for the full set of 

results (Fig. 5). For the low concentraEons, STAMNet-Upscale (Fig. 7b) and the MLP+ECA model 

(Fig. 7c) are completely indisEnguishable, and both clearly outperform the interpolaEon (Fig. 7d). 

For the high concnetraEons, there is similarly very liZle difference between the spaEal errors for 
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STAMNet (Fig. 7f) and the MLP+ECA model (Fig. 7g). Both aZenEon-based neural nets outperform 

simple interpolaEon (Fig. 7h), although similar to the full set of results for biomass upscaling, these 

differences are negligible compared to the overall error of the spaEal distribuEons. 

 
Table 3. Results for upscaling experiments. Each model was trained and tested 14 3mes, and values here 

correspond to the average scores over all 14 model itera3ons. MAE is given in >.?
>#  and MSE is given in 

G>.?
># 	H

*
. Values in bold indicate sta3s3cally significantly be`er performance than all other models. 

 InterpolaEon Simple MLP OpEmal MLP MLP + ECA STAMNet-Upscale 
MSE 4089 2691 2508 2525 𝟐480 
MAE 26.42 28.08 21.62 𝟐𝟏.𝟑𝟓 21.60 
𝑅2 0.727 0.903 0.897 0.892	 𝟎.𝟗𝟐𝟓 

 
Table 4. Results for upscaling experiments with molasses (ED) and Chromium. MAE is given in >.?

>#  and MSE 

is given in G>.?
># 	H

*
. Values in bold indicate sta3s3cally significantly be`er performance than all other models. 

𝐂𝐫(𝐕𝐈) InterpolaEon MLP + ECA STAMNet-Upscale 
MSE 5.32 × 10−4 1.02 × 10−4 8.92 × 10−5 
MAE 3.31 × 10−3 2.45 × 10−3 2.23 × 10−3 
𝑅2 0.9093 0.9508 0.9227 
𝐄𝐃	 InterpolaEon MLP + ECA STAMNet-Upscale 

MSE	 1.20 × 10−4 2.77 × 10−5 𝟐.𝟔𝟐 × 𝟏𝟎−𝟓 
MAE	 2.72 × 10−3 1.81 × 10−3 1.80 × 10−3 
𝑅2	 0.2937 0.888 𝟎.𝟗𝟏𝟑 

 
 

The Eme series plots for the low and high-concentraEon upscaling (Fig. 8) reveal slightly 

more interesEng deviaEons from the analysis of all test simulaEons. The low-concentraEon Eme 

series (Fig. 8a) shows dramaEcally beZer performance for the aZenEon-based neural nets when 

compared to the simple interpolaEon. The high-concentraEon Eme series (Fig. 8b), on the other 

hand, shows relaEvely small differences between each model. Thus, our results indicate that a 

simple interpolaEon is a generally accurate way to upscale high-concentraEon RT simulaEons of 
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biomass growth, but not for low-concentraEon simulaEons as it results in a large amount of 

overpredicEon of biomass concentraEons.  

 

 
Figure 8. Biomass 3me series averaged over low (a) and high-concentra3on (b) upscaling test simula3ons. 
This figure shows STAMNet-Upscale outperforms simple interpola3on and our MLP+ECA architecture, 
especially for lowconcentra3on simula3ons. 
 
 

Across all biomass upscaling experiments, our results generally show that compared to 

models without aZenEon, STAM can selecEvely focus on important features in the input, 

potenEally leading to beZer performance on tasks that require understanding complex spaEal-

temporal relaEonships. Compared to ECA, which focuses on aZenEon in the temporal dimension, 

STAM provides a more comprehensive aZenEon mechanism that considers both spaEal and 

temporal dimensions. STAM generally performs beZer than ECA, which indicates the cross-

dimensional aZenEon, which improves feature mapping in both the spaEal and temporal 

dimensions, is advantageous for the task of upscaling. 

6.4.2.2 Molasses and Cr(VI) Upscaling 
 
We further show the strong performance of STAMNet by upscaling RT simulaEons for the molasses 

(electron donor - ED) and Cr(VI) features. We find that STAMNet significantly outperforms the 

simple interpolaEon and MLP+ECA model for ED predicEon in the MSE and 𝑅2 metrics (Table 4). 

Furthermore, the MLP+ECA model also significantly outperforms the simple interpolaEon in all 

metrics, which once again shows the benefit of neural architectures, and especially those with 

a. b.
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aZenEon, for the task of upscaling. Specifically, these results show that the benefits of our neural 

architectures for upscaling are not restricted to biomass, and can be extended to other features. 

The results for Cr(VI) similarly show high upscaling performance for both STAMNet-Upscale and 

the MLP+ECA model. Also, in this case, the MLP+ECA model outperforms STAMNet-Upscale in the 

𝑅2 metric, but performs worse than STAMNet-Upscale for the MSE and MAE metrics (although 

none of these differences are significant), indicaEng that the differences in performance between 

STAM and ECA may depend on the parEcular task. Thus, in addiEon to providing trained models 

for biomass, ED, and Cr(VI) upscaling, we provide mulEple frameworks with which future 

researchers can train their own upscaling models for specific features they may be interested in. 

Although we find STAMNet to outperform our opEmized MLP+ECA model, we encourage 

researchers to run their own experiments with their data to determine which model works best 

for their task. 

Similar to our results for the biomass upscaling, we also present spaEal and Eme series 

errors for chromium and molasses (Fig. 9). Like all the spaEal errors for biomass, we find that 

STAMNet-Upscale and the MLP+ECA model outperform the simple interpolaEon but are not able 

to capture the fine-grained details of the spaEal distribuEons for molasses (Fig. 9c) and chromium 

(Fig. 9d). For the mean Eme series comparison, we see STAMNet-Upscale and the MLP+ECA model 

perform equally well at molasses upscaling (Fig. 9a). Surprisingly, although the MLP+ECA model 

gives a higher 𝑅2 for Cr(VI) when calculated as the mean over the set of 𝑅2 values for each Eme 

series, when the 𝑅2 is calculated from the mean Eme series, we see STAMNet-Upscale has a slightly 

higher 𝑅2 (Fig. 9b). The simple interpolaEon performs well for Cr(VI), but not for molasses, further 

showing its inconsistent performance compared to that of the aZenEon-based neural nets. 

 



 

 
237 

 
Figure 9. STAMNet and interpola3on performance for (a) molasses 3me series, (b) chromium 3me series, 
(c) molasses spa3al error distribu3ons, and (d) chromium spa3al error distribu3ons. STAMNet outperforms 
interpola3on in the molasses 3me series and spa3al distribu3on and the chromium spa3al distribu3on, but 
it is nearly indis3nguishable from the interpola3on for the chromium 3me series. 
 

6.4.3 STAMNet-Upsample Performance 

In addiEon to our invesEgaEon of upscaling in the sense of increasing the lateral domain of the 

simulaEon output, we also use another variant of the STAMNet architecture (Fig. 3c) to increase 

the resoluEon of the simulaEon output, which we refer to as the task of upsampling. We find that 

STAMNet-Upsample shows significantly beZer performance than all other models for the 

upsampling task in MSE and MAE, although a simple interpolaEon gives the best performance for 

𝑅2 (Table 5). Considering we trained and tested on a smaller number of simulaEons for the task of 

upsampling compared to the task of upsampling, and that we only used homogeneous 

permeability fields for the upsampling simulaEons, it is likely that the upsampling task was not 

difficult enough to result in large performance differences between models. Furthermore, some 

degree of overfikng on the MSE and MAE during training may have resulted in a model that 

focuses more on the spaEal aspects of the upsampling task than the average temporal ones. 
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Looking at the spaEal distribuEons for STAMNet-Upsample and the interpolaEon (Fig. 10), 

we can see that STAMNet-Upsample does indeed have more accurate spaEal approximaEons 

(especially at the domain boundaries). Thus, while it could be argued the simple interpolaEon may 

be more appropriate for tasks that don't care about the accuracy of the spaEal distribuEon, for 

tasks where spaEal accuracy is important, STAMNet-Upsample is clearly advantageous to simple 

interpolaEon. We also find that the addiEon of STAM to the opEmized MLP improves performance, 

but the addiEon of ECA to the opEmized MLP generally decreases performance. These results 

contrast those of the upscaling task, where both ECA and STAM were found to improve MLP 

performance. As seen by the high 𝑅2 of all models for the average Eme series, the task of 

upsampling does not result in large differences in the average temporal trends. Thus, ECA, which 

uses 1D convoluEon to improve temporal feature extracEon, results in a Eny improvement in 𝑅2 

(relaEve to the opEmal MLP), but causes a decrease in MAE and MSE due to the extra focus on 

temporal features. This trend is not observed in the upscaling results (Table 3), however, as ECA 

shows significant improvements to MAE for biomass upscaling. Given the significant differences in 

task and input tensors, these differences are likely a result of imperfect training hyperparameters. 

Thus, although ECA generally doesn’t perform as well as STAMNet-Upsample for the task of 

upsampling, it is possible these results would be different if hyperparameters were individually 

tuned for each model, which strengthens our suggesEon for future researchers to experiment with 

both the STAMNet and MLP+ECA architectures. 

Table 5 Results for upsampling experiments. MAE is given in >.?
>#  and MSE is given in G>.?

># 	H
*
. 

 Interpolation Simple MLP Optimal MLP MLP+ECA STAMNet-Upsample 
MSE 73.50 54.45 28.58 29.76 26.22 
MAE 1.443 1.557 1.263 1.268 1.238 

R2 0.9997 0.9987 0.9984 0.9987 0.9986 
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Figure 10. Spa3al error distribu3on of biomass averaged over all test simula3ons and 3me steps for the 
upsampling task. (a) Ground truth spa3al distribu3on. (b) Ground truth minus output from STAMNet-
Upscale. (c) Ground truth minus simple interpola3on. (d-f) Zoomed in versions of a-c. These figures show 
the superior spa3al performance of STAMNet over interpola3on for the task of upsampling, especially near 
the boundaries of the domain. 
 
 

6.5 Conclusions 

This study presents STAMNet, a novel deep learning architecture for upscaling and upsampling 

reacEve transport simulaEons in the hyporheic zone. Our results demonstrate that STAMNet 

outperforms tradiEonal interpolaEon methods and simpler neural network architectures across 

mulEple tasks and metrics. STAMNet-Upscale significantly im- proved upon simple interpolaEon 

and opEmized MLP models for biomass upscaling, achieving the highest 𝑅2 (0.925) and lowest 

MSE among tested models. Furthermore, the spaEotemporal aZenEon module (STAM) 

consistently out- performed efficient channel aZenEon (ECA), indicaEng the benefits of cross-

dimensional feature refinement for reacEve transport modeling. Notably, STAMNet showed 

robust performance across different concentraEon regimes, with parEcularly strong 

improvements over interpolaEon for low-concentraEon simulaEons. The architecture performed 

well with other reacEve transport variables, showing significant improvements for molasses 

(electron donor) upscaling and compeEEve performance for chromium upscaling. Furthermore, 

STAMNet-Upsample

STAMNet-Upsample
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STAMNet-Upsample demonstrated superior performance in increasing simulaEon resoluEon, 

parEcularly in capturing spaEal details more accurately than simple interpolaEon. By enabling 

rapid upscaling and upsampling of simulaEons, this approach has the potenEal to accelerate 

research in hyporheic zone processes and enhance our understanding of complex subsurface 

biogeochemical dynamics. As the field conEnues to evolve, the integraEon of advanced deep 

learning architectures like STAMNet with domain-specific knowledge promises to unlock new 

possibiliEes in environmental modeling and decision-making. 

While STAMNet shows promise for acceleraEng and enhancing reacEve transport 

simulaEons, some limitaEons should be noted. The current implementaEon struggles to capture 

fine-grained spaEal variaEons in upscaled simulaEons, instead producing averaged distribuEons. 

AddiEonally, the model’s performance may vary depending on the specific reacEve transport 

variable being predicted, as seen in the differences between biomass, molasses, and chromium 

results. It’s also important to acknowledge that the study focused on a specific hyporheic zone 

scenario, and further tesEng is needed to confirm generalizability to other subsurface 

environments and reacEve transport systems. Future research direcEons should address these 

limitaEons and expand upon the current work. InvesEgators should explore methods to 

incorporate physical constraints or mulE-scale approaches to improve the spaEal fidelity of 

upscaled predicEons. Extending the model to handle a wider range of reacEve transport variables 

and scenarios, including more complex biogeochemical reacEons and heterogeneous subsurface 

environments, would further enhance its applicability. The integraEon of STAMNet with physics-

based models to create hybrid approaches that leverage both data-driven and mechanisEc insights 

is also an exciEng avenue for development. Finally, invesEgaEng the potenEal of STAMNet for 
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other spaEotemporal predicEon tasks beyond reacEve transport, such as climate modeling or 

ecosystem dynamics, could open up new applicaEons for this innovaEve architecture. 
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Chapter 7: Conclusion and Synthesis of Findings 
 

7.1 Introduction 

This dissertaEon presents a comprehensive exploraEon of microbe-mediate reacEve transport 

with a focus on microbial moElity, parEcle tracking, and biomass growth in the hyporheic zone. 

Through a combinaEon of experimental observaEons, physics-based computaEonal modeling, 

and deep learning approaches, this work advances our understanding of complex biogeochemical 

interacEons across mulEple scales. Furthermore, this work addresses criEcal gaps in our ability to 

model and predict reacEve transport processes in heterogeneous subsurface environments. 

UlEmately, each chapter of this dissertaEon may be used to develop more robust bioremediaEon 

models and experiments. 

 

7.2 Synthesis of Key Findings and Advancements 

7.2.1 Advancing Microbial Transport Understanding 

The invesEgaEon of advecEon-dominated transport dynamics of pili and flagella-mediated moEle 

bacteria in porous media (Chapter 2) provides fundamental insights into how different bacterial 

species navigate complex flow environments. This work builds upon previous studies of bacterial 

moElity in porous media [1-11] by explicitly comparing the behavior of different moElity 

mechanisms under varying flow condiEons. The research reveals a criEcal transiEon to advecEon-

dominated transport as flow rates increase, with bacteria exhibiEng peritrichous flagella (e.g., 

Paenibacillus) demonstraEng superior maintenance of their moElity characterisEcs at higher flow 

rates compared to bacteria with pili or monotrichous flagella. Furthermore, this chapter 

challenges previous assumpEons about bacterial behavior in pore networks by discovering that 
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moEle bacteria tend to oversample medium-velocity regions, contrary to earlier noEons of 

preferenEal sampling in low-velocity zones [3]. 

These findings carry significant implicaEons for understanding microbial transport in 

natural and engineered porous media systems. The observaEon of differenEal transport behavior 

among bacterial species with varying moElity mechanisms suggests that models of microbial 

transport in the subsurface must account for species-specific moElity characterisEcs. This 

consideraEon becomes parEcularly crucial in bioremediaEon applicaEons, where the transport 

and distribuEon of specific bacterial strains may significantly impact treatment efficacy [4]. 

AddiEonally, the idenEficaEon of advecEon-dominated transport regimes provides valuable 

insights into condiEons where simplified transport models may suffice. In high-flow scenarios, 

where bacterial moElity plays a diminished role, the dispersion coefficient will be almost enErely 

a funcEon of the flow speed and porous geometry. In low-flow regimes, the dispersion coefficient 

will have less dependence on speed, similar dependence on porous geometry, and much greater 

dependence on moElity. Thus, the work from this chapter indicates that at low speeds the 

dispersion coefficient should also be calculated as a funcEon of moElity type. 

7.2.2 Enhancing Particle Tracking Methodologies 

The evaluaEon of parEcle tracking codes for dispersing parEcles in porous media (Chapter 3) and 

the development of DeepTrackStat (Chapter 4) represent significant advancements in our ability 

to analyze and interpret experimental data on parEcle and microbial transport. Through rigorous 

analysis, the work of chapter 3 demonstrates that tracking algorithm performance for dispersing 

parEcles is largely dependent on the parEcle spacing displacement raEo (PSDR), with all methods 

exhibiEng decreased accuracy at low PSDR values. The research also revealed that tradiEonal 

metrics [12] for evaluaEng tracking performance may significantly underesEmate errors in certain 
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scenarios, parEcularly when employing aggressive linking algorithms. Lastly, this chapter 

illustrates some of the errors that may have impacted the results from chapter 2, such as the 

tendency to miss high-speed parEcles and therefore underpredict the max speeds and mean 

square displacement (MSD). As such, this finding has important implicaEons for the design and 

interpretaEon of microfluidics experiments. 

The limitaEons idenEfied in exisEng algorithms moEvated the development of 

DeepTrackStat, a novel deep learning framework for extracEng moEon staEsEcs from parEcle 

tracking videos. This innovaEve approach offers substanEal advantages over tradiEonal parEcle 

tracking methods [13-17], demonstraEng improved accuracy in extracEng speed, velocity, and 

turn angle distribuEons, parEcularly in challenging scenarios involving high-speed and high-

density parEcle movements. Moreover, DeepTrackStat achieves significantly reduced computaEon 

Eme compared to classical parEcle tracking methods, enabling the analysis of larger datasets while 

maintaining high precision. Together, Chapters 3 and 4 provide essenEal tools and knowledge for 

improving the extracEon of useful informaEon from microfluidic parEcle tracking experiments, a 

crucial task for validaEng and refining computaEonal models of microbial transport and reacEve 

processes in porous media [2, 7, 9-11]. 

7.2.3 Improvements in Reactive Transport Modeling 

While each chapter of this dissertaEon contributes to the advancement of reacEve transport 

modeling, the contribuEons manifest in different ways across scales and applicaEons. Chapter 2's 

improved understanding of bacterial moElity for species with different moElity types indicates 

potenEal new avenues for the refinement of bacterial transport models. The advancements in 

parEcle tracking accuracy and methodology presented in Chapters 3 and 4 enable more precise 
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parameter esEmaEon for bacterial transport models, ulEmately enhancing the accuracy of 

reacEve transport simulaEons through improved foundaEonal measurements. 

Chapters 5 and 6 represent the most direct applicaEons to reacEve transport modeling. 

Chapter 5 introduces an experimentally-calibrated physics-based augmentaEon to PFLOTRAN that 

incorporates speed-based decay and temperature-based growth of biomass. Through 

comprehensive sensiEvity analysis, this work demonstrated that speed-based biomass decay 

significantly impacts biofilm development only under specific condiEons: when fluid speeds 

exceed 10 meters/day or in cases of "weakly cohesive" biofilms with exponenEal decay 

parameters below 0.4. Chapter 6 presents STAMNet, a neural framework for upscaling reacEve 

transport simulaEons, which addresses aspects of the long-standing problem of computaEonal 

intensity in reacEve transport simulaEons. This innovaEve approach demonstrates the potenEal 

for deep learning techniques to bridge the gap between detailed process understanding and 

pracEcal computaEonal requirements. 

7.2.4 Bridging Scales in Reactive Transport Modeling 

A fundamental contribuEon of this dissertaEon lies in its comprehensive approach to bridging 

scales in reacEve transport processes, from individual bacterial trajectories to field-scale reacEve 

transport. The insights gained from microbial moElity studies provide a foundaEon for 

understanding how individual bacterial behaviors translate to larger-scale transport paZerns. 

While these microscale findings were not directly incorporated into the larger-scale models 

presented in later chapters, they inform our conceptual understanding of how microscale 

processes may influence macroscale outcomes. 

The advancements in parEcle tracking methodologies serve as a crucial bridge between 

experimental observaEons and computaEonal models. By improving our ability to extract accurate 
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moEon staEsEcs from experimental data, these tools enable beZer validaEon and refinement of 

both pore-scale and conEnuum-scale transport models. The broad applicability of these tools, 

parEcularly DeepTrackStat, extends beyond their original design for microfluidics studies. Through 

training on diverse simulaEons, these tools demonstrate uElity for analyzing parEcles under 

various moEon regimes across mulEple scales. 

The invesEgaEon of hyporheic zone processes integrates understanding from mulEple 

scales by considering how pore-scale flow dynamics and biomass growth processes manifest in 

Darcy-scale reacEve transport behavior. The velocity-based biomass decay model represents a 

parEcularly significant achievement in incorporaEng microscale biofilm dynamics [18] into 

conEnuum-scale reacEve transport simulaEons. STAMNet further advances this mulE-scale 

integraEon by directly addressing the challenge of upscaling reacEve transport simulaEons, 

demonstraEng how machine learning techniques can effecEvely capture sub-grid scale processes 

in large-scale predicEons without imposing overwhelming computaEonal demands. 

7.2.5 Implications for Environmental Management and Bioremediation 

The findings presented in this dissertaEon have substanEal implicaEons for environmental 

management and bioremediaEon strategies. The observaEon of differenEal transport 

characterisEcs among bacterial species with varying moElity mechanisms suggests that 

bioremediaEon strategies must carefully consider the specific moElity traits of target 

microorganisms when selecEng bacterial strains for bioaugmentaEon or designing flow condiEons 

to opEmize the distribuEon of beneficial microorganisms in contaminated aquifers. 

The development of DeepTrackStat provides environmental managers and researchers 

with a powerful tool for analyzing visual data of moving parEcles for a variety of scales and flow 

condiEons, enabling more accurate characterizaEon of contaminant transport behavior and more 
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robust modeling of bioremediaEon processes. Furthermore, STAMNet's capability for rapid large-

scale predicEons enables comprehensive Monte Carlo and sensiEvity analyses that can support 

more informed decision-making in scenarios such as assessing contaminant spread in 

groundwater systems under different scenarios, evaluaEng long-term remediaEon effecEveness, 

and predicEng climate change impacts on subsurface biogeochemical cycles. 

The insights gained from the hyporheic zone study reveal that speed-based biomass decay 

significantly impacts remediaEon outcomes only under specific condiEons of high fluid speed or 

weak biomass development. This understanding can inform the opEmizaEon of nutrient delivery 

and bioremediaEon strategies based on the idenEfied feedback mechanisms between flow, 

nutrient transport, contaminant degradaEon, and biomass growth. AddiEonally, the novel insights 

into the relaEonship between bioEc and abioEc reducEon demonstrate that while abioEc 

reducEon generally dominates in high-electron-donor environments, bioEc reducEon plays a 

crucial role in determining the spaEal distribuEon of remediaEon hotspots. 

 

7.3 Limitations and Technical Challenges 

The experimental and computaEonal approaches developed in this dissertaEon, while advancing 

our understanding of reacEve transport processes, face several important limitaEons. The 

bacterial moElity studies, though revealing important relaEonships between moElity mechanisms 

and transport behavior, were necessarily limited to a subset of bacterial species and 

environmental condiEons. A more robust study would invesEgate transport for a wider variety of 

flow rates, and the simplified porous media geometries used in experiments, while providing 

valuable insights, cannot fully replicate the complexity of natural sediments.  
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Technical limitaEons in parEcle tracking methodologies persist despite the advances made 

through DeepTrackStat. The fundamental trade-off between tracking accuracy and computaEonal 

efficiency remains a challenge, parEcularly when dealing with high parEcle densiEes or rapid 

moEon. While DTS successfully addresses many limitaEons of tradiEonal tracking approaches, its 

reliance on training data means that performance may degrade when encountering parEcle 

behaviors significantly different from those represented in the training set. In addiEon, DTS is only 

designed to extract speed, velocity component and turn angle staEsEcs, meaning researchers who 

want to derive more complex staEsEcs from the raw trajectories will sEll need to resort classical 

parEcle tracking methods. 

The PFLOTRAN augmentaEon faces limitaEons related to the simplifying assumpEons 

inherent in conEnuum-scale modeling. The speed-based decay model, while incorporaEng 

important microscale processes, necessarily homogenizes complex spaEal heterogeneiEes in 

biofilm structure and bacterial behavior. The idenEfied threshold values for significant speed-

based decay effects may vary in natural systems with more complex geometry and chemical 

condiEons. Furthermore, the model's treatment of biofilm strength as a uniform parameter may 

not adequately capture the spaEal and temporal variability in biofilm properEes observed in 

natural systems. Finally, the equaEon used to model speed-based biomass decay used fikng 

parameters for calibraEon, but a more robust method would derive this equaEon from 

fundamental physical principles such as the conEnuity equaEon and/or conservaEon of mass. 

STAMNet's current implementaEon, while demonstraEng significant potenEal for upscaling 

reacEve transport simulaEons, faces constraints in its generalizability. The framework's fixed input 

and output dimensions limit its direct applicaEon to different spaEal scales or problem 

geometries. The requirement for consistent tensor shapes during training creates challenges for 
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developing truly scale-agnosEc models. AddiEonally, computaEonal resources remain a limiEng 

factor across mulEple aspects of this work, parEcularly in the generaEon of training data through 

high-resoluEon reacEve transport simulaEons and the validaEon of model predicEons against 

experimental data. 

 

7.4 Future Research Directions 

Several promising avenues for future research emerge from the findings and limitaEons idenEfied 

in this dissertaEon. Future studies of bacterial moElity should expand to invesEgate a broader 

range of bacterial species under varying environmental condiEons. A parEcularly promising 

approach would involve the development of experimental systems using geneEcally engineered 

bacterial strains that differ only in moElity mechanisms. Such controlled comparisons would 

provide crucial insights for developing more accurate transport models while eliminaEng 

confounding variables present in cross-species comparisons. 

The advancement of parEcle tracking capabiliEes requires development of more 

sophisEcated deep learning architectures that can maintain accuracy while reducing 

computaEonal demands. Future iteraEons of DeepTrackStat could incorporate adapEve training 

approaches to handle a broader range of parEcle behaviors and experimental condiEons. 

Extension to three-dimensional tracking applicaEons represents a parEcularly important direcEon, 

as many natural systems exhibit complex three-dimensional flow paZerns and bacterial behaviors 

that cannot be fully captured in planar analysis. 

The reacEve transport modeling framework could be enhanced through incorporaEon of 

addiEonal biogeochemical processes and improved representaEon of spaEal heterogeneity. 

Future work should focus on developing more sophisEcated approaches for represenEng biofilm 
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mechanical properEes and their spaEal variaEon within conEnuum-scale models. IntegraEon of 

advanced imaging techniques with reacEve transport modeling could enable beZer 

characterizaEon of biofilm spaEal structure and its influence on local flow fields and reacEon rates. 

STAMNet's capabiliEes could be significantly expanded through architectural modificaEons 

enabling true scale and feature agnosEcism. Development of training strategies that can handle 

variable tensor shapes, potenEally through implementaEon of adapEve neural network 

architectures or novel batching approaches, would greatly enhance the framework's applicability. 

CreaEon of a feature-agnosEc version would require extensive training on diverse reacEve 

transport scenarios, potenEally uElizing transfer learning approaches to efficiently capture 

common paZerns across different chemical systems. 

IntegraEon of these various research direcEons with emerging technologies represents a 

parEcularly promising avenue for advancement. Real-Eme sensing networks could provide 

validaEon data for model predicEons while enabling adapEve opEmizaEon of bioremediaEon 

strategies. Climate change impacts on subsurface biogeochemical processes could be beZer 

understood through applicaEon of these modeling frameworks to scenarios incorporaEng 

projected environmental changes. 

7.5 Concluding Remarks 

This dissertaEon advances our understanding of reacEve transport processes across mulEple 

scales through the integraEon of experimental observaEons, computaEonal modeling, and 

innovaEve deep learning techniques. The mulEfaceted approach developed here spans from 

microscale observaEons of bacterial moElity to field-scale predicEons of biogeochemical 

processes, providing a comprehensive framework for improving predicEons of microbe-mediated 

reacEve transport in heterogeneous porous media. 
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The development of novel tools such as DeepTrackStat and STAMNet, coupled with 

mechanisEc insights into microbial transport and hyporheic zone processes, provides a robust 

framework for improving predicEons of reacEve transport in heterogeneous porous media. These 

advancements have significant implicaEons for environmental management and bioremediaEon, 

offering the potenEal for more informed decision-making and opEmized remediaEon strategies. 

The challenges and opportuniEes idenEfied point toward an increasingly integrated approach to 

understanding and modeling reacEve transport processes. Future advances will likely emerge from 

the confluence of high-resoluEon experimental techniques, sophisEcated data analysis methods, 

and innovaEve modeling frameworks. Success in these endeavors will require conEnued 

collaboraEon across disciplines, from molecular biology to computer science, as well as sustained 

investment in both experimental and computaEonal infrastructure. 

As we conEnue to face global challenges related to water quality and ecosystem health, 

the approaches developed in this dissertaEon offer promising avenues for advancing our 

understanding and stewardship of criEcal environmental interfaces. By bridging scales and 

integraEng diverse scienEfic approaches, this work lays a foundaEon for more comprehensive and 

predicEve models of coupled hydrological, geochemical, and biological processes in complex 

environmental systems. 
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Supplementary Figures 
 

 
Supplementary Figure 1. Speed PDF for no-flow experiments in the high porosity geometry (grain 
diameter = 40 mm, pore length = 20 mm).  

 
Supplementary Figure 2. Whole-mount transmission electron microscopy (TEM) images of 
Acidovorax JHL-9 (unpublished images from [22], courtesy of Alice Dohnalkova). The whole-mount 
images were prepared by adding JHL-9 liquid culture to a copper electron microscopy grid and 
examining by TEM at 200 kV using a JEOL 2010 high-resoluEon TEM. 
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Supplementary Figure 3. Sample trajectories for all PT codes for selected high-PSDR bimodal and unimodal 
simula3ons. Each line corresponds to a unique trajectory (with random colors used to show the contrast 
between individual trajectories). For these high-PSDR simula3ons, all PT codes besides TP show near-perfect 
replica3on of the ground truth trajectories. 
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Supplementary Figure 4. Speed-angle joint probability density difference heatmaps for the unimodal 
simula3on. Speeds determined from par3cle tracking (Sp) are normalized by the mean speed of the 
respec3ve simula3on (Ssim). Red corresponds to an underpredic3on of probability density, blue corresponds 
to an overpredic3on of probability density, and white corresponds to an accurate probability density 
predic3on within the speed-angle feature space. These results show strong performance for TM-Kalman 
and V-TrackMat, slightly weaker performance for TM-LAP, and bad performance for TP. 
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Supplementary Figure 5. All MSDs. Simulated par3cle speeds increase going from leP to right, and par3cle 
densi3es increase going from top to bo`om. The bo`om right corner represents the lowest-PSDR 
simula3on. The speed values for each column are given as a range because the unimodal simula3ons always 
have lower mean speeds than the bimodal simula3ons. The bimodal MSDs are shown by dashed lines, and 
the unimodal MSDs are shown by do`ed lines. These figures confirm trends present in the other results - 
TP performs the worst, and other algorithms start to fail at Sp ≥ 11.3. 
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Supplementary Figure 6. All Cv. Simula3on speed increases from leP to right, and par3cle density increases 
from top to bo`om. The bo`om right corner represents the lowest-PSDR simula3on. Autocorrela3ons from 
the heterogenous simula3ons are do`ed and slightly brighter colored than the bimodal simula3ons. The 
bimodal simula3ons show a periodicity in autocorrela3on that is generated due to the periodic converging 
and diverging flowpaths of the bimodal geometry. The unimodal simula3ons show a clear trend of 
decorrela3on over 3me. All PT codes show be`er performance for the unimodal simula3ons, although this 
is poten3ally due to differences in the mean speeds of the simula3ons. In terms of PT performance, these 
results follow the same general trends as the MSDs. 
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Supplementary Figure 1. Ensemble weigh-ngs for the calibrated and uncalibrated SSMs 
and SC. Each SSM is comprised of several models and the specific ensemble used to 
make a predic-on is determined by the output of the SC. 
 
 
 

 
 
Supplementary Figure 2. Results from PIPs (hCps://github.com/aharley/pips). Some 
amount of tracking seems to occur, but it is not useful for the task of mo-on sta-s-c 
extrac-on. Further research should seek to fine tune this method (and other similar 
op-cal flow methods) to see if the models offer any underlying advantages for transfer 
learning. 

 

 
Supplementary Figure 1. Ensemble weigh-ngs for the calibrated and uncalibrated SSMs 
and SC. Each SSM is comprised of a number of models and the specific ensemble used to 
make a predic-on is determined by the output of the SC. 
 
 
 

 
 
Supplementary Figure 2. Results from PIPs (hBps://github.com/aharley/pips). Some 
amount of tracking seems to occur, but it is not useful for the task of mo-on sta-s-c 
extrac-on. Further research should seek to fine tune this method (and other similar 
op-cal flow methods) to see if the models offer any underlying advantages for transfer 
learning. 
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Appendix 
 
A1 – Pseudocode for simple reac=ve transport simulator 
 
## IniEalize variables and parameters 
## IniEalize grid dimensions: nx, ny, nz 
## IniEalize Eme steps: nt, dt 
## IniEalize spaEal steps: dx, dy, dz 
## IniEalize arrays: C[nx][ny][nz], 𝜃[nx][ny][nz], v[nx][ny][nz], K[nx][ny][nz], R[nx][ny][nz] 
## Where C is the concentraEon of the species, 𝜃 is the water content, v is the pore water velocity, 
K is the ## hydraulic conducEvity, and R is a reacEon source/sink term that represents the chemical 
reacEons with  ## other species 
## Set iniEal/boundary condiEons for C, theta, v 
 
## Main Eme-stepping loop 
for t = 1 to nt: 
    ## Solve Richards equaEon for water content 
    for x = 1 to nx: 
        for y = 1 to ny: 
            for z = 1 to nz: 
                𝜃[x][y][z] = solve_richards_equaEon(𝜃[x][y][z], K(𝜃)) 
                update_hydraulic_conducEvity(𝜃[x][y][z]) 
 
    ## Compute velociEes using Darcy's law 
    for x = 1 to nx: 
        for y = 1 to ny: 
            for z = 1 to nz: 
                v[x][y][z] = compute_darcy_velocity(𝜃[x][y][z], ...) 
 
    ## Solve AdvecEon-Dispersion-ReacEon EquaEon for concentraEon 
    for x = 1 to nx: 
        for y = 1 to ny: 
            for z = 1 to nz: 
                C[x][y][z] = solve_ADE(C[x][y][z], v[x][y][z], 𝜃[x][y][z], R[x][y][z], D, …)  
 
    ## Apply boundary condiEons 
    apply_boundary_condiEons(C, 𝜃, v) 
 
    ## Output results at specified intervals 
    if t % output_interval == 0: 
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        output_results(C, 𝜃, v, t) 
 
## End of simulaEon 
finalize_output() 
 
## Helper funcEons (to be implemented separately) 

funcEon solve_richards_equaEon(𝜃[x][y][z], K(𝜃), &+(,)
&'

, D): 

    ## Solve Richards’ equaEon based on water content, hydraulic conducEvity, and dispersion 
 
funcEon update_hydraulic_conducEvity(𝜃): 
    ## Update hydraulic conducEvity based on water content 
 

funcEon compute_darcy_velocity(𝜙, K, $%
$q

 ): 

    ## Compute velocity using Darcy's law 
 
funcEon solve_ADE(𝐶, v, 𝜃, R, D): 
    ## Compute ADE as a funcEon of concentraEon, pore water velocity, water content, chemical 
reacEons, and dispersion 
 
funcEon apply_boundary_condiEons(C, 𝜃, v, 𝜙, K): 
    ## Apply appropriate boundary condiEons 
 
funcEon output_results(C, 𝜃, v, t, 𝜙, K): 
    ## Output or save results at the current Eme step 
 


