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Abstract

Reactive transport (RT) simulators are important tools often used by researchers to gain insights
into subsurface processes. These multi-physics simulations attempt to represent many hydro-
biogeochemical phenomena, but they often fall short in terms of computational speed and
physical accuracy. This dissertation provides several tools and conceptual advancements that can
be used to improve the speed and accuracy of RT simulations and further our understanding of
their outputs. Specifically, this work investigates microbial motility in porous microfluidic devices,
a comparison of particle tracking methods in porous media, and an investigation of biomass
growth and chromium reduction in the hyporheic zone. Furthermore, this dissertation details the
development and performance-testing of deep-learning-based tools for the extraction of motion
statistics from videos of particles and the upscaling of RT simulations. Overall, new tools and
insights are provided to help improve environmental management strategies, such as
bioremediation of contaminated groundwater or improved understanding of nutrient cycles in
water systems.

This dissertation advances our understanding of microbe-mediated reactive transport
processes through a multi-scale approach that combines experimental observations,
computational modeling, and innovative deep learning techniques. At the micro scale,
experimental investigations reveal how different bacterial motility mechanisms respond to varying
flow conditions, with peritrichous flagella enabling more resilient motility under higher flow rates
compared to monotrichous flagella or pili. These findings provide crucial insights for developing
more accurate models of microbial transport in subsurface environments.

To improve micro-scale investigations of bacterial transport, this dissertation gives a

comparison of particle tracking (PT) methods and presents a novel deep-learning-based PT



method. The comparison between PT methods provides guidance for future researchers in terms
of appropriate particle tracking linking algorithms to use for dispersive particles in porous media,
conditions for desirable particle tracking experimental setups, and the limitations of particle
tracking as it relates to analysis of bacterial transport. The novel deep learning method,
DeepTrackStat (DTS), provides a framework for extracting motion statistics from particle tracking
videos, addressing fundamental limitations in traditional tracking methods while significantly
reducing computational demands. DTS shows especially strong performance for high-speed
particles, giving it a clear spot for application within the pantheon of PT methods.

In addition to the work at the micro scale, this dissertation also provides improvements
to microbe-mediated reactive transport modeling at the Darcy scale. The integration of novel
physical approaches enables comprehensive investigation of coupled hydro-biogeochemical
processes in the hyporheic zone, particularly focusing on the interactions between fluid flow,
biomass development, and chromium reduction. Through extensive sensitivity analyses, this work
reveals that while abiotic reduction dominates in high-electron-donor environments, biotic
processes crucially influence the spatial distribution of reduction hotspots. Furthermore, the
research demonstrates that speed-based biomass decay significantly impacts biomass growth only
under specific conditions of high fluid velocity or weak biofilm cohesion, providing important
constraints for environmental management strategies. Expanding on the Darcy-scale microbe-
mediated reactive transport modeling, this dissertation presents STAMNet, a neural network for
upscaling reactive transport simulations that enables efficient prediction of large-scale transport
phenomena while preserving the essential dynamics observed at smaller scales. STAMNet has a
simple MLP structure with a spatiotemporal attention mechanism (STAM) that uses cross-

dimensional residual connections to improve both spatial and temporal feature extraction.



This work's multi-scale, multi-method approach provides a foundation for improving
predictions of reactive transport in heterogeneous porous media while offering practical tools for
environmental monitoring and remediation. The findings and methodologies presented here
advance our ability to bridge scales in reactive transport modeling, from individual bacterial
behavior to field-scale predictions, while the developed deep learning tools offer new possibilities
for efficient analysis and upscaling of complex environmental processes. These contributions
support more informed decision-making in environmental management and provide a framework
for future investigations of coupled biological, chemical, and physical processes in porous media

systems.
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Chapter 1: Introduction

1.1 Background and Literature Review

1.1.1. Microbe-mediated Reactive Transport

Microbe-mediated reactive transport encompasses the interaction of biological, chemical, and
physical processes within porous media, especially in subsurface environments. Microbial
activities drive these processes primarily through their metabolic and motility behaviors, affecting
both the transport of solutes [1-4] and the growth and dynamics of biofilms [5-8]. Some of the
most studied aspects of microbe-mediated reactive transport include attachment/colonization [4,
9-12], chemotaxis [13-17], DLVO interactions [18, 19], biofilm formation [20] and breakup [21],
microbial motility [22-31], nutrient cycling [32-34], biodegradation kinetics [35], weathering [36],
and bioremediation [37-41]. To understand and predict the impacts of microbes on geochemical
processes, an understanding of their transport is paramount. In other words, fundamental
developments in transport modeling impact most of the models of biogeochemical interactions in
the subsurface that are of interest to the research community. Furthermore, microbe-mediated
reactive transport is a highly multidisciplinary field, meaning that developments in one area often
lead to developments in different areas. For example, improvements in representations of biofilms
at the pore scale can help inform how we simulate them in reactive transport models at the Darcy
and field scales [42-44], or how we model transport of cancer drugs in human tissue [45].

As computers have become more powerful, allowing for more complex interactions to be
simulated at larger scales, a large body of literature investigating the transport of microbes in
porous media has recently developed [1-4, 9-13, 19, 21, 29-31, 42, 46-51]. Given the wide variety
of literature, an almost equally wide variety of mathematical models have been developed to

simulate various aspects of microbial transport. A brief introduction to the mathematics of
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microbe-mediated reactive transport is given in sections 1.1.1.1 and 1.1.1.2 of this dissertation.
Studies in this domain range from the micro-scale [52, 53] to the field scale [10, 54]. Micro and
pore-scale experiments generally involve microfluidic devices, which are tiny (um to mm range)
transparent sections of porous media which contain small channels that allow fluid to be injected
into the model [53]. Darcy and field scale experiments often use column experiments [10], acetate
injection experiments [55], and reactive transport simulations [56, 57] to model transport.
Microbe-mediated reactive transport is a highly active area of research for two primary
reasons — the complexity of the interactions means there are a wide variety of both fundamental
and applied discoveries still to be made, and there is a clear human need for the development of
better tools and more comprehensive theories that describe microbe-mediated reactions in the
subsurface. This interaction is essential in environmental settings such as the hyporheic zone,
where groundwater and surface water meet, creating a dynamic space for complex
biogeochemical reactions [58]. For instance, microbes capable of reducing Cr(VI) to less toxic Cr(ll)
significantly affect the transport of chromium through groundwater systems [59, 60].
Understanding these processes is critical for fields such as bioremediation [61], water quality
management [62], and nutrient cycling [63]. In addition to an increase in our modeling capabilities
of bioremediation and nutrient cycling, two things that are of high importance for human
governments around the world, many general theories and modeling methods of microbe-
mediated reactive transport can be extended to the human body [64-68]. Some of the most
important recent research in this domain includes studies that examine the dispersion of bacteria
around cancerous tumors [69]. Specifically, it has been found that some bacteria, such as
Salmonella, are attracted to chemicals emitted by necrotic regions of tumors and will try to burrow

towards the middle of the tumor [70, 71]. Ultimately, the depth of our understanding of microbe-
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mediated reactive transport processes, and our ability to simulate them, has a direct impact on
our ability to effectively manage our environment and develop life-saving medical treatments.
1.1.1.1 Reactive Transport Simulations

General Overview

Reactive transport (RT) is the general term used to describe coupling of fluid flow, solute transport,
and chemical reactions in porous media. Microbe-mediated reactive transport can be considered
a subset of reactive transport wherein the primary point of investigation is to understand how
microbes impact the environment. In natural environments, RT plays a pivotal role in determining
the fate and distribution of nutrients, contaminants, and other chemical species. Models of RT,
often referred to as reactive transport simulators, integrate hydrodynamic equations with
chemical reaction networks, allowing researchers to simulate the evolution of species
concentrations and mineral phases over time. RT simulations vary widely in terms of the hydro-
biogeochemical and physical phenomena that are represented, but they all follow the same
general structure and workflow.

In RT simulators, flow and transport are coupled. For a Darcy-scale (continuum)
simulation, Richards’ equation is generally used to represent flow, and the advection-dispersion
equation (2) is used to represent transport [72]. Richards’ equation can be thought of as making
Darcy’s law, which is a general representation of flow though porous media, a function of
saturation. Darcy’s law is given as:

(1) g = —KVh
where q is the specific discharge, K is the hydraulic conductivity tensor (k/u), and Vh is the

hydraulic head gradient. Making Ka function of water saturation (8) and splitting up the hydraulic
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head into pressure head (h) and elevation head (z) terms then substituting this sum into Darcy’s
law gives
(2) g=-K(@)V(h + z) = —K(0)(Vh + Vz)
The continuity equation, which represents the conservation of mass in the domain, is given as
(3) Z—f +V-g=0
Substituting q from (2) into (3) then gives
(4) Z2+V-[K(O)(Vh+V2)] =0

Expanding the divergence term and introducing the specific moisture capacity C(h) = — % gives

an d
(5) C(h)Sr = V- (K(W)Vh) + == [K(h)]
This is commonly referred to as the mixed-form Richards equation, which is valid for both

saturated and unsaturated conditions [72]. The Richards equation can also be represented in

terms of soil water content (6) by introducing the soil water diffusivity term D(8) = —%
which gives

dK(0)
0z

(6) 2=V (D(8)VO) +
This equation allows the simulator to calculate the fluid velocity field throughout the domain by

solving for K(0) and substituting the value into (2). Equation (6) is only valid for unsaturated
conditions (since in saturated conditions ‘;—f = 0), meaning equation (5) is the more general

representation of Richards’ equation. The ADE, on the other hand, governs the transport of

solutes, and is often represented in its simplest 3D form as

(7) % = —V-(wC) + V- (DVC)

14



Here, C is the solute concentration, t is time, v is the pore water velocity (derived from Darcy's
law), and D is the hydrodynamic dispersion coefficient tensor. The 1D version of the ADE is given
by

ac d2¢ ac
(8) Ry =D3z—v35

Here R represents retardation, which is a phenomena that describes the interactions between
solute particles and the solid phase (AKA sorption). The retardation factor R is typically
determined through laboratory batch or column experiments where both conservative and

reactive tracers are used to measure the delay in breakthrough curves [73]. For linear sorption

kapp
n

isotherms, R can be calculatedas R =1 + , where p,, is bulk density, n is porosity, and k is

the soil partition coefficient which equals fyckoc Where fy is the organic carbon fraction and
koc is the carbon-water partition coefficient [74]. When dealing with nonlinear sorption behavior,
such as Freundlich or Langmuir isotherms, the retardation factor becomes concentration-
dependent and more complex to determine [75]. The presence of retardation effectively slows
down the apparent velocity of the contaminant plume relative to the groundwater velocity by a
factor of R. For example, if R = 2, the contaminant on average moves at half the speed of the
groundwater, meaning the breakthrough curve is twice as long. Laboratory batch tests to
determine k  values often involve mixing known quantities of solution and solid material, allowing
equilibration, and then measuring final concentrations to construct sorption isotherms [76].

The iterative solution of reactive transport equations involves a complex process of
stepping through both time and space to solve equations (2), (5), and (7) (among others). As
outlined in the pseudocode in Appendix Al, the process begins with initialization, setting up the
grid dimensions, time steps, and initial conditions for concentration, water content, and velocity.

The main simulation then proceeds through a series of time steps, each involving several key
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computations across the entire spatial domain. For each time step, the algorithm first solves the
Richards equation to update the water content at every grid point, followed by updating the
hydraulic conductivity. Next, it computes the Darcy velocities based on the new water content.
The core of the simulation involves solving the Advection-Dispersion Equation (ADE) for solute
concentration, which accounts for advection, dispersion, and reactions in however many spatial
dimensions have been prescribed to the domain (up to a max of 3). This step, as shown in Al,
requires nested loops over all spatial dimensions, highlighting the computational intensity of the
process. After updating concentrations, boundary conditions are applied, and results are output
at specified intervals. In more complex reactive transport simulations, the concentrations of many
species must be computed and the reaction functions have more terms, further increasing
computational complexity. These reactions, in turn, can modify physical properties like porosity
and permeability, so most reactive transport simulators will also update the permeability field
with each temporal iteration.

The pseudocode in A1 demonstrates why speeding up reactive transport simulations is a
high priority in the field. The nested loops for spatial dimensions (x, y, and z) within the main time-
stepping loop result in a large number of calculations for each time step. For real-world
applications with fine spatial and temporal resolutions, this can result in long computation times.
This computational intensity is further increase when many species with reactions that depend on
many other species. Consequently, researchers and developers in the field are continually seeking
ways to optimize these simulations, such as through parallelization [77], adaptive mesh
refinement [78], reduced order modeling [79], improved numerical schemes [80], adaptive time

stepping [81], and deep learning [82]. These optimizations have allowed, and will hopefully
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continue to allow, researchers to tackle more complex problems and provide timely insights for
critical environmental and engineering decisions.

These simulators also incorporate chemical databases containing thermodynamic and
kinetic data for various reactions. Geochemical calculations are performed to determine
speciation, mineral saturation states, and redox conditions [83, 84]. Different coupling schemes,
like sequential non-iterative approaches or global implicit methods, are employed to solve the
transport and reaction calculations efficiently [85]. The ability to handle multiphase flow,
temperature effects, and porosity-permeability feedback are also crucial features in many
simulators [86]. These allow for modeling more complex scenarios involving multiple fluid phases,
temperature-dependent reactions, and evolving medium properties. Some of the most popular
reactive transport simulation frameworks include PFLOTRAN [87], STOMP [88], CrunchFlow [89],
TOUGHREACT [90], PHREEQC [91], MIN3P [92], and OpenGeoSys [93]. Furthermore, especially
advanced studies of phenomena not currently represented in these popular models are often
developed through coupling with more advanced computational fluid dynamics models such as
OpenFOAM [94], or the scale of the complexity of the simulation is reduced, allowing the
simulation to be programmed from scratch to investigate a single/few RT phenomena.

Dispersion in Reactive Transport

One of the many complexities of reactive transport simulations involves the representation of
dispersion. Dispersion generally describes the spreading of solutes due to the combined effects of
molecular diffusion and non-uniform flow fields that cause variabilities in in the velocities of solute
particles [95, 96]. Dispersion can be enhanced through phenomena such as particle motility [97],
density driven flow [98], soil heterogeneity and anisotropy [99], pore-scale mixing [100], and any

other phenomena that can increase the variability of solute pathlines, and it can be reduced
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through high pore-network connectivity [101], attachment/adsorption [102], and low Peclet
numbers [103]. The Peclet number, which represents the ratio of advective to diffusive transport,
plays a crucial role in characterizing both microscopic and macroscopic dispersion behavior [103,
104]. A lower Peclet number means diffusion is the dominant form of transport, and a larger
number means advection is the dominant form of transport. Thus, a greater Peclet number
generally results in greater dispersion.

Dispersion (both micro and macro) can be quantified in terms of the direction of transport
through the phrases “longitudinal” (in the direction of flow), “transverse” (perpendicular to
direction of flow), and “vertical”. In micro-scale environments, the relative amounts of each
dispersion coefficient are highly dependent on experimental conditions, such as porous geometry
and solute particle properties. In macro-scale environments, dispersion is primarily dependent on
flow and soil conditions and mainly occurs in the longitudinal direction, although these
generalizations are subject to a number of other hydro-biogechemical conditions.

At the micro scale, dispersion is primarily governed by the variations in streamlines
followed by particles, which are caused by the geometry of the porous medium or properties of
the particles (such as motility and attachment). The flow field is generally solved via the Navier-
Stokes equations, and particle transport can be solved in a variety of ways. In cases where the
exact positions of the particles over time are known, such as in chapter 2 of this dissertation on
bacterial transport in microfluidic devices, we can use the second centered moment of the
positions of the bacteria to quantify dispersion. When the exact positions of the particles are not
known, but the influent and effluent concentrations are known to allow construction of a
breakthrough curve, then we can use the ADE to approximate dispersion by fitting the

breakthrough curve to the analytical solution [105, 106]. However, the ADE is often an inadequate
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representation of solute transport, as it only provides an analytical solution in Fickian regimes. For
non-Fickian transport, models such as the fractional ADE [107] and the continuous time random
walk [108] can achieve higher accuracy of breakthrough curve predictions and effective dispersion
coefficients.

As briefly discussed above, one common approach to quantify dispersion at the micro
scale is through the second centered moment of the average concentration [95, 109]. The second
centered moment, denoted as a2(t), is defined as: 62(t) = [[x — u(t)]%c(x, t)dx, where c(x, t)
is the concentration of the solute at position x and time t, and u(t) is the first moment (mean
position) of the concentration distribution at time t. In chapter 2, we calculate the average spatial

variance of bacteria over time evolving from a point-like injection, akin to the transport Green
function defined as D¢(t) = w_ld)f(;” dy'Dé(t,y') [110, 111]. This function describes the

calculation of the effective dispersion coefficient across the y-dimension of the domain. It can be
solved discretely by calculating the asymptotic rate of spreading for each bin comprising the y
dimension (assuming advection is in the x direction). The temporal evolution of the second
centered moment provides valuable insights into the dispersive behavior of the solute plume. In
the case of Fickian dispersion, where the dispersion coefficient is constant and the advection-
dispersion equation (ADE) is valid, the second centered moment grows linearly with time [112,
113]. The slope of this linear relationship is directly proportional to the macroscopic dispersion
coefficient. However, in heterogeneous media, the assumption of Fickian dispersion may not hold,
particularly at early times or in the presence of strong heterogeneity [108, 114]. In such cases,
anomalous (non-Fickian) transport may occur, characterized by non-linear growth of the second

centered moment with time [107, 115].
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Macroscopic dispersion, also commonly referred to as hydrodynamic dispersion, generally
emerges as a result of fluid and solute velocity variations at larger scales, such as the Darcy and
field scales [116, 117]. The hydrodynamic dispersion coefficients (in the longitudinal direction) are
calculated as D, = D,,, + va;, where D,, is molecular diffusion, v is the seepage velocity, and a;,
is the longitudinal dispersivity (units of length). The mechanical dispersion term arises from the
spatial averaging of pore-scale velocity fluctuations, while molecular diffusion is an intrinsic
property of the solute-fluid system [116, 118]. Thus, in reactive transport simulations, the
representation is determined by the scale. For micro-scale and pore-scale simulations, dispersion
is often defined as the average spatial variance of particles over time. For Darcy-scale and field-
scale simulations, dispersion is often defined with this simple function.

In addition to the calculation of dispersion coefficients, which allow for calculation of
concentrations in time and space via the ADE or fADE, the temporal evolution of dispersion also
provides a critical lens through which to view transport. Over time, dispersion in heterogeneous
media often exhibits distinct pre-asymptotic and asymptotic regimes [96, 117]. In the pre-
asymptotic regime, the dispersive behavior is strongly influenced by the local velocity fluctuations
and the correlation structure of the heterogeneous medium [119]. In the asymptotic regime, the
dispersive behavior is primarily governed by larger-scale heterogeneities such as geological units
(and other spatially-large soil properties), flow inputs, and particle behavior (motility, attachment,
etc.).

In general, both pre-asymptotic and asymptotic regimes can be defined as subdiffusive,
diffusive, superdiffusive, or ballistic. These regimes are often defined through the mean-square

displacement (MSD). Specifically, in the context of diffusion, the regime is considered subdiffusive

.. d(MSD) d(MSD)

if 0 < 1, diffusive if d(MSD) d(M5D) >

= 1, superdiffusive if ———— > 1, and ballistic if ————= > 2.
dt dt
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Although the MSD can be formulated in a variety of different ways depending on the context of
use, in the context of diffusion (no advection), the second centered moment of an ensemble of
particles is exactly equal to the MSD. Thus, for diffusive regimes, the diffusion coefficient can be
calculated by setting the slope of the MSD equal to 2dDt [120], where d is the number of

dimensions, D is the diffusion coefficient, and t is time. This can be solved by taking the derivative

d(IZ‘:D)i = D. Although it is important to understand both the pre-

on both sides, which gives

asymptotic and asymptotic behavior, which can reveal phenomena such as confinement, the
overall transport (effective diffusion) is generally defined by the asymptotic behavior [119, 109].
During the early stages of the pre-asymptotic regime, the solute plume may exhibit
ballistic or superdiffusive transport, characterized by a rapid growth of ¢?(t) [115, 120]. This
behavior arises from the coherent motion of solute particles along preferential flow paths, leading
to enhanced spreading [121]. As the plume evolves and samples more of the heterogeneous
velocity field, the pre-asymptotic regime may transition to a subdiffusive behavior, where the
growth of a2(t) slows down [108, 114]. This transition from high to low MSD slope is often
emblematic of confined transport conditions. As particles spread out over time in low-porosity
media, they are likely to encounter dead-end pores and weakly-connected paths, which causes a
subsequent decrease in the MSD slope due to what is essentially a decrease in the degrees of
freedom of particle motion [122-124].
1.1.1.2 Microbial Motility and Bacterial Transport

Types of Microbial Motility

Microbial motility is a field that describes the movements patterns of all microbes (bacteria,

viruses, protists, algae, fungi, etc.), although the term is generally used to describe the motility of
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bacteria. Researchers have identified five general modes of bacterial motility — swimming,
twitching, gliding, sliding, and swarming [125].

Swimming motility represents the most well-characterized form of bacterial locomotion,
primarily facilitated by rotating flagella that act as helical propellers [27, 126, 127], allowing
bacteria to achieve speeds of up to 500 um - s~1 in liquid environments [128]. Flagella come in
many different shapes and sizes, but can generally be classified as monotrichous (one flagella),
amphitrichous (flagella on both ends of the bacterium), lophotrichous (many flagella on one end),
or peritrichous (many flagella all over the bacterium). When monotrichous flagella are located at
one of the ends of the major axis of the bacteria, it may be referred to as a polar flagellum [129].
Swimming bacteria can respond to various environmental stimuli through chemotaxis, modulating
their flagellar rotation to navigate towards attractants or away from repellents [130, 131]. The
ability to swim provides bacteria with considerable advantages in surface colonization [12], biofilm
formation [132], and establishing infections in host organisms [133].

Twitching motility constitutes a distinct form of bacterial translocation dependent on Type
IV pili (T4P), protein filaments that undergo cycles of extension, substrate attachment, and
retraction [134]. The molecular machinery responsible for twitching comprises a complex
membrane-spanning apparatus that includes ATPase motors, which power pili extension and
retraction through ATP hydrolysis [27]. This form of motility enables bacterial cells to move across
solid surfaces at speeds of approximately 0.1-1 um/s [135], significantly slower than swimming
but highly effective for surface colonization. The coordinated expression and assembly of pili is
regulated by multiple environmental signals and integrated into broader cellular processes
including biofilm formation and virulence. Twitching motility plays a crucial role in host

colonization by pathogenic bacteria, particularly in the early stages of infection when bacteria
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must traverse host tissue surfaces [125, 136]. The biomechanical forces generated during pili
retraction can exceed the nanonewton range [137], making twitching a remarkably powerful,
although generally slow, form of bacterial movement.

Gliding motility represents a sophisticated form of bacterial locomotion that enables
directed movement across solid surfaces without conventional motility appendages. This type of
motility is particularly prevalent among phylogenetically diverse bacteria including members of
the Bacteroidetes phylum, Myxococcales order, filamentous cyanobacteria, and mycoplasmas,
with each group potentially employing distinct molecular mechanisms [138, 139]. Building upon
this foundation, contemporary research has unveiled the intricate biophysical principles governing
bacterial gliding at the single-cell level. Advanced microscopy and rheological studies have
demonstrated that successful translocation depends on the mechanical properties of both the
bacterial cell and its environment [140, 141]. The substrate's physical characteristics prove
particularly crucial, as they determine whether movement is primarily driven by cellular
deformation-induced matrix flow caused by slime production or by complex interfacial dynamics
at the bacterial leading edge. This mechanistic understanding of gliding motility has broader
implications for bacterial behaviors including predation, development, and biofilm formation,
while also providing insights into how bacteria navigate diverse environmental conditions.

Sliding motility describes a passive form of bacterial surface translocation that occurs
without the use of dedicated motility structures, where the primary driving force comes from the
physical pushing of dividing cells against their neighbors [125]. This process manifests differently
across bacterial species, which can be classified into distinct groups based on their sliding
mechanisms. In almost all cases, however, the physical basis of sliding involves the reduction of

surface tension through various secreted compounds including biosurfactants (e.g., surfactin,
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serrawettin), exopolysaccharides, hydrophobic proteins, and glycopeptides, which collectively
modify substrate surface properties [125, 142]. This form of passive motility, driven by the
expansive force of cellular reproduction, proves particularly advantageous for bacterial colony
expansion in environments where active motility mechanisms might be energetically unfavorable,
and its regulation involves complex cellular processes that integrate environmental sensing with
the coordinated production of surface-modifying compounds.

Swarming motility represents a sophisticated form of social bacterial movement
characterized by the rapid and coordinated migration of dense populations across surfaces [27,
125, 143]. This process requires flagella and involves a complex differentiation process whereby
vegetative cells transform into elongated, hyperflagellated swarmer cells capable of moving in
multicellular groups. The initiation of swarming behavior typically involves sensing appropriate
environmental conditions, including surface contact, nutrient availability, and cell density,
followed by the coordinated expression of genes involved in swarmer cell differentiation and
movement [144]. Critical to successful swarming is the production of surfactants that reduce
surface tension and facilitate the expansion of the bacterial population across the substrate.
Swarming motility has important implications for bacterial pathogenesis and antimicrobial
resistance, as swarming cells often display elevated resistance to various antibiotics and host
defense mechanisms [145].

Bacterial Transport

The transport of bacteria through fluid environments represents a complex interplay of physical,
chemical, and biological factors operating across multiple spatial and temporal scales. At the
microscale (1-10 um), bacterial transport is governed by the mechanics of cell motility [27, 31,

126], Brownian motion [27, 146, 147], chemotaxis [13, 15, 16] and cell-surface interactions [18],
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while larger scale phenomena (>100 um) such as advection, dispersion, microbial growth/death,
attachment rates, and bulk fluid dynamics dominate transport at the macro level [4, 46, 148, 149].
The relative contribution of these mechanisms varies significantly depending on environmental
conditions, with the Reynolds number (Re = 10° — 107 for swimming bacteria) and Péclet number
serving as critical dimensionless parameters that characterize the balance between advective and
diffusive transport processes. In natural systems, bacterial transport is further complicated by
cellular responses to chemical gradients (chemotaxis), oxygen availability (aerotaxis), and various
other environmental stimuli that can modify movement patterns and influence net displacement.

The presence of active motility mechanisms also substantially impacts bacterial transport
dynamics and population distributions. Flagellar swimming, which generates speeds of 1-500
um/s [128], enables enhanced diffusion coefficients of motile bacteria that typically range from
10 to 10° cm¥s, which is about 1000x greater than the typical diffusion coefficients for non-
motile cells [150]. Surface-associated motility modes demonstrate distinct transport
characteristics: twitching (0.1-1 um/s) [135] facilitates surface colonization through pili-mediated
movement, gliding (1-10 um/s)[151] enables translocation along surfaces without appendages,
and swarming (2-10 um/s)[152] promotes rapid population-scale movement across surfaces.
These various motility mechanisms exhibit distinct responses to fluid flow, with swimming cells
demonstrating rheotaxis (orientation with respect to flow) and complex trajectories arising from
the interplay between self-propulsion and ambient flow fields [27, 125]. For example, swimming
bacteria often exhibit upstream migration in shear flows and accumulation near surfaces due to
hydrodynamic interactions [153].

In porous media, bacterial transport is governed by multiple retention and mobilization

mechanisms operating simultaneously. Physical straining occurs when cells become trapped in
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pore throats smaller than a critical size (which primarily depends on the ratio of average pore
throat size to bacteria size), while physiochemical filtration processes include van der Waals forces,
electrostatic interactions, and hydrophobic effects that promote attachment to grain surfaces [4,
18, 19]. Fluid shear stress also impacts bacterial transport, resulting in phenomena such as shear
trapping [147] and colonization of surfaces [12]. The efficiency of these shear and retention-based
mechanisms depend strongly on cell size, shape, and surface properties (e.g., lipopolysaccharides,
extracellular polymeric substances), as well as the pore space geometry and chemical conditions
(pH, ionic strength) of the system.

Chemotaxis significantly modulates bacterial transport behavior through the generation
of directed movement along chemical gradients [15-17]. This process operates through a well-
characterized signal transduction pathway involving methylation-dependent adaptation, which
allows bacteria to respond to relative changes in chemoeffector concentrations over several
orders of magnitude [154]. The impact of chemotaxis on transport is often quantified using the
chemotactic sensitivity coefficient y,, which can range from 107> to 10~ cm?s depending on the
species and chemoattractant [155, 156]. In flowing systems, the interplay between chemotaxis
and fluid flow creates complex transport phenomena, including the formation of bacterial plumes
and bands that can significantly enhance dispersion rates. These effects are particularly
pronounced in the presence of sharp chemical gradients, where the chemotactic drift speeds
(typically 0.1-2.5 um/s) can become comparable to or exceed the fluid velocity [157]. In addition,
chemotaxis can dramatically influence bacterial transport through porous media by promoting
attachment or detachment from surfaces based on local chemical conditions.

The impact of bacterial transport extends across numerous practical applications in both

engineered and natural systems. In environmental engineering, bacterial transport models inform
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bioremediation strategies and the design of water treatment systems. These applications often
involve complex geometries and heterogeneous environments where traditional continuum
models may break down, necessitating multiscale approaches that bridge molecular, cellular, and
population-level dynamics. In addition to the research discussed above on transport in porous
media and chemotaxis, recent studies have highlighted sophisticated behaviors such as surface
sensing [158], collective motion [159, 160], and adaptation to mechanical and chemical
constraints [161-163]. These insights are particularly relevant for understanding biofilm formation,
infection processes, and microbial ecosystem dynamics in natural environments such as soil,
groundwater, and marine systems, where bacterial transport plays a crucial role in nutrient cycling

and ecosystem function.

Mathematics of Microbial Motility and Bacterial Trasnport

The mathematical description of bacterial motility spans multiple scales, from individual cell
dynamics to Darcy-scale behavior. Although some mathematical descriptions of twitching exist,
this dissertation section only provides a brief overview of some of the most relevant swimming-
based models. At the microscale, the Langevin equation is often used to describe the movement

of Lagrangian particles [164, 165].

(9) 2 = v[x()] + £()VZD

where v is the velocity of the particle at position x during time t, £(t) is a Gaussian white noise
vector, and D is the molecular diffusion coefficient. This equation captures the inherent Brownian
motion of bacteria, although it is a rough approximation of overall motility. To better represent
motility, we can adjust the Langevin equation to represent run and tumble motion. Many

Langevin-type representations of motility have been designed by researchers over the years to
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better approximate bacterial motion. One example represents the Langevin equation as a

potential differential [166]

(10) & = =2+, (1)

where x is rate of change of position %, N, (t) is the gaussian noise function, and U is a
phenomenological potential function described as

(11) Ux) =Uy—p [x — %cosh(Sx)]

where U, is an adjustable constant and the tuning parameters p,y, and § are used to define the

run and tumble states of the bacteria according to the relationship p28\/1+y2=C. Cis a
constant and p(8,y) = 1 during tumbling and p(8,y) > 1 during runs. More detailed run and
tumble parameters are described through a control parameter 8(8,y). The inclusion of B and
steady speed v; in the Langevin equation for speed leads to

(12) v = =2(B)v — vs(B)] + nu ()

where 4, (B) is the inverse of the characteristic run and tumble times, 7. The solution for equation

(13) for the condition of v(t,) = v, is the given as
(13) v(8,1) = ve(B) + [vo — n(®IGP (&, t0) + J mo()GP (£, 9)ds

where Gﬁ’” is the green function for run and tumble motion defined as

_|t—t’|

(14) ¢P(t)=e ®
In porous media, the Langevin approach is refined to account for a variety of dispersion-related
phenomena [31]. A useful description of the 1D streamwise motion of non-motile bacteria known

as the continuous time random walk approach (CTRW) can be formulated discretely as

As As
(15) Xpy1 = xp + 7' the1 =ty + o

n
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where the transition length As represents the incremental distance that a bacterial cell travels
along its actual path through the porous medium, and the advective tortuosity y represents how
much the trajectory of a particle deviates from a straight line and is defined as the total distance
traveled by a particle divided by its displacement. To account for the run and tumble motility of
bacteria, this approach is further amended to include trapping time t.

as

A A
(16) xn+1=xn+_sr tn+1=tn+_S+T
X Un

Un
The principle of this model is that bacteria randomly attach to grain surfaces and will remain on
the surface for a certain amount of time before moving (either due to motility or external forces).

The modeling of trapping times is still an active area of research, but may be exponentially

exp (—T—tc)
[

distributed as Y (t) =

For chemotactic populations, the Keller-Segel model [167] offers a continuum description
that has become fundamental in understanding bacterial pattern formation and biofilm
development. The time-dependent density of cells p(r,t), assuming no changes due to cell
growth and death, can be modeled as [168]

(17) Oip(r,t) +V-j(r,t) =0

where the flux of cells is j(r,t) = j(r, )aiffusion + J (T t) chemotaxis- J(T ) aif Fusion is defined
as —D,Vp where D, is the macroscopic diffusion coefficient, and j (7, t) chemotaxis is defined as
PVchemotaxis- HEre, Vehemotaxis iS the velocity of bacteria due to chemotaxis, also known as the
chemotactic drift velocity, which is defined as vV pemotraxis = X(€)Vc where c is concentration and
x(c) is the chemotactic sensitivity. Using these relationships to develop a reaction-diffusion
equation results in

(18) d,p = D,V?p = V[px(c)Vc]

(19) d.c = D.V*c + hp — kc
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where hp and kc account for production and consumption of the chemotactic species. These two
equations are thus referred to as the Keller-Segal model.

At the Darcy scale, bacterial transport is commonly described using modified forms of the
Advection-Dispersion  Equation (ADE) that incorporate biological processes and
attachment/detachment kinetics. The 1D ADE for microbial transport in a saturated,

homogeneous porous medium can be formulated in simple terms as [46]

pp3S _ ot oc
(20)R + - o Dax2 v

where S is the attached microbe concentration, D is the hydrodynamic dispersion coefficient, v is

microbial velocity, R is the retardation factor, p, is the bulk density, and ¢ is the bed porosity.

- as . .
Kinetic attachment and detachment rates are used to represent the p—;’g term in the equation

Pb as

(21) = kqetC — £ kdetS

3(1- s)v

where ke = 1o . This formula comes from the domain of colloid filtration theory. Here,

d. is the average grain size, 1y is known as the single-collector contact efficiency, and a is the
attachment collision efficiency. Equation (20) is a relatively accurate representation of the
subsurface transport of bacteria in fully saturated conditions. However, transport often takes place
in unsaturated conditions and thus depends on air-water exchange. A more complex 1D formation

of microbial transport in porous media for multiphase flow can be given as [148]

(22)

86,C 3S  9AgyT 0 ( ] a_c) —anC+BW
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Where C is the microbe concentration in the aqueous phase, 6, is the volumetric water content
available for microbes, S is the microbe concentration in the solid phase, A,,, is the interfacial

area per unit volume, I is microbe concentration in the gaseous phase, q. is the volumetric water
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flux density for colloids, and B,, is a source/sink term that represents microbial growth and death
in the aqueous phase.

The mathematical frameworks presented here, ranging from microscale Langevin
descriptions of individual bacterial motion to Darcy-scale transport equations, demonstrate the
complex multiscale nature of bacterial transport in porous media. While these models have
proven valuable in describing various aspects of bacterial movement and transport, significant
challenges remain in bridging scales and incorporating the full complexity of biological responses,
particularly in heterogeneous environments. Future work will likely focus on developing more
sophisticated hybrid approaches that can better couple individual bacterial behavior with
population-scale phenomena while maintaining computational tractability. Additionally, the
incorporation of emerging understanding about bacterial surface interactions, biofilm formation,
and collective behavior will continue to refine these mathematical descriptions.
1.1.1.3 Growth and Dynamics of Biofilms
Biofilms are communities of microorganisms that attach to surfaces and surround themselves with
a self-produced sticky matrix substance. These microbial communities are ubiquitous in nature
and can be found virtually anywhere moisture and nutrients are available, from tooth surfaces
[169] to deep ocean hydrothermal vents [170]. The development of biofilms follows distinct
stages: initial surface attachment, microcolony formation, maturation, and dispersal [171]. Surface
attachment is mediated by specific adhesins and regulated by intracellular signaling molecules,
particularly cyclic-di-GMP, which serves as a master regulator in the transition from planktonic to
sessile states [172]. Upon attachment, bacteria initiate the production of extracellular polymeric

substances (EPS), creating a complex matrix that comprises polysaccharides, proteins,

31



extracellular DNA, and lipids [173]. This matrix may account for up to 90% of the mass of the
biomass, with the mass of the actual cells comprising the other 10% [173].

The biofilm matrix serves multiple critical functions beyond structural support. Cross-
linked polymers within the matrix create a complex three-dimensional architecture featuring
water channels that facilitate nutrient transport and waste removal [174-177]. Furthermore, the
biofilm matrix, with its negatively charged eDNA, has been shown to bind to positively charged
antibiotics, thereby reducing there efficiency in penetration and subsequent destruction of the
biofilm [178]. The matrix composition demonstrates remarkable plasticity, with bacteria modifying
EPS production in response to environmental conditions including hydrodynamic conditions [179],
temperature, pH, and nutrient availability [180]. This adaptability enables biofilms to maintain
structural integrity and function across diverse environments.

Spatiotemporal organization within biofilms exhibits sophisticated patterns driven by both
chemical and physical factors. Chemical gradients of oxygen, nutrients, and signaling molecules
create distinct microenvironments that influence bacterial metabolism and gene expression [181].
These gradients can lead to metabolic stratification, with aerobic processes generally dominating
in upper regions (due to more O, and light) and anaerobic processes occurring in deeper layers.
Population-level coordination is achieved through quorum sensing networks, which regulate gene
expression based on cell density through small diffusible molecules [182]. Multiple quorum
sensing circuits may operate simultaneously, enabling fine-tuned responses to environmental
conditions [183].

In medical contexts, biofilms present significant challenges due to their enhanced
resistance to antimicrobial treatments. This resistance arises through multiple mechanisms:

physical protection by the EPS matrix [178], altered metabolic states within the biofilm [184], and
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the emergence of persister cells that can survive high antibiotic concentrations [185, 186]. Biofilms
are implicated in a large number of human diseases, including caries, gingivitis, periodontitis, lung
infections, catheter-based infections, eye infections, and medical device-associated infections
[187]. Novel therapeutic approaches targeting biofilm-specific mechanisms are being developed,
including matrix-degrading enzymes [188, 189], quorum sensing inhibitors [190], and surface
modifications that prevent initial attachment [191].

In porous media systems, biofilm growth creates complex feedback loops between
biological activity and physical transport processes. As biofilms develop, they can significantly
reduce pore spaces, which alters flow patterns and creates preferential flow channels [192, 193].
This modification of the pore structure influences both hydraulic conductivity and solute transport
pathways. As a simple consequence of the Bernoulli principle, local flow velocities can significantly
increase in channels adjacent to biofilm-occupied pores, while becoming negligible in fully blocked
pores. These hydrodynamic changes affect nutrient delivery and waste removal, creating spatial
heterogeneities in biofilm growth and metabolism.

The mechanical properties of biofilms in porous media depend strongly on flow conditions
and nutrient availability. When biofilms are exposed to shear stresses of about 0.01 to 1 Pa,
chemical signaling between cells results in rapid adaptations that often take the form of increased
EPS production [194]. Shear forces at critical thresholds (typically 0.1-1 Pa) can cause periodic
sloughing events, where portions of the biofilm detach and are transported downstream,
potentially colonizing new regions [195, 196]. In terms of nutrient availability, organic carbon
[197], phosphate, and calcium [198] concentrations have been determined to be primary limiting

factors of biofilm growth.
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In subsurface environments, biofilm-mediated processes significantly influence
biogeochemical cycling and contaminant fate and transport. Within the hyporheic zone, biofilms
create reactive hotspots where enhanced mixing between surface water and groundwater
streams promotes rapid nutrient transformation [199-201]. Biofilm development also affects
hyporheic exchange flows by modifying both the hydraulic conductivity and reactive surface area
of the sediment. Studies have shown that mature biofilms can significantly reduce hydraulic
conductivity, thereby altering residence time distributions and reaction kinetics [202-204].

The influence of biofilms on reactive transport processes extends beyond simple flow
modification. The EPS matrix acts as a selective barrier that can concentrate certain solutes while
excluding others, creating unique microenvironments for chemical reactions. Metal ions, for
example, can accumulate within the matrix at concentrations much higher than the bulk fluid due
to binding with negatively charged EPS components [205, 206]. This concentration effect,
combined with the diverse metabolic capabilities of biofilm communities, enables efficient
transformation of various contaminants including heavy metals, organic pollutants, and pesticides.

Biofilm growth in reactive transport models is typically represented through coupled
equations describing biomass accumulation and fluid flow. A common approach is the
multispecies biofilm model introduced by Wanner and Gujer [207] and detailed by Wang and

Zhang [208]. A continuum description of biofilm can be given as:

i yo f — L23i
(23) at - #Olﬁ pi 9z

where the i subscript corresponds to the specific biofilm species, f is the volume fraction, po is
the specific growth rate, p is the biofilm density, and g is the mass flux of the biofilm. This flux can

be expressed as g;(t, z) = u(t, z)p;f;(t, z). Substituting this into equation (9) yields
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Which allows us to establish a relationship between the volume fraction of biofilm and flow speed.
Summing over all microbial species and integrating over the vertical dimension then gives us the
fluid velocity at the film-water interface of the biofilm as a function of thickness (L).

(25) u, = fOL/Io(t,z’)dz’ + o (t)

where o(t) is defined as the exchange velocity between the biofilm and the bulk liquid. More
sophisticated models incorporate biofilm mechanical properties, detachment due to shear stress,
motility of dispersed cells, and equations for substrate interactions [209].

1.1.1.4 Nutrient Cycling and Biomass Growth in the Hyporheic Zone

Introduction and Historical Context of the Hyporheic Zone

The hyporheic zone represents the dynamic interface beneath and alongside stream beds where
shallow groundwater and surface water mix. This region was first conceptualized by Orghidan in
1959 as an interstitial habitat with distinct fauna [210], but its significance in ecosystem
functioning wasn't fully appreciated until decades later when the hyporheic zone came to be
known as a critical ecotone linking surface and groundwater systems [211]. Early studies also
demonstrated the zone's crucial role in organic matter processing and nutrient retention [212] and
revealed complex patterns of nitrification and denitrification [213].

As research progressed, Boulton and colleagues synthesized knowledge on hyporheic
zone hydrology, emphasizing how flow paths and residence times determine biogeochemical
transformations [214]. The integration of molecular techniques in the early 2000s highlighted
complex spatial organizations of biofilms in streambed sediments and their fundamental role in
carbon and nitrogen cycling [215]. Around this time the concept of hyporheic "hot moments" -

periods of intense biogeochemical activity — was also introduced, emphasizing the temporal
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dynamics of nutrient cycling and how hydrological events and seasonal changes alter
biogeochemical processes [216].

The functional significance of the hyporheic zone has become increasingly apparent
through studies demonstrating its role in ecosystem processes ranging from nutrient
transformation to contaminant degradation. Recent work by Rittmann and McCarty has
emphasized how understanding microbial growth and vyield in these systems is crucial for
developing accurate reactive transport models [217]. This understanding becomes particularly
important when predicting ecosystem responses to perturbations and optimizing bioremediation
strategies in complex environmental systems. Other recent studies have identified the hyporheic
zone as an important source of methane and carbon dioxide [218, 219].

Physical and Hydrological Controls

The physical and hydrological characteristics of the hyporheic zone fundamentally control its
biogeochemical functioning. Flow magnitude and direction significantly influence these processes.
Research has revealed distinct patterns in gaining streams, where hyporheic flux points upward
from groundwater, versus losing streams, where it points downward from river water [220]. These
flow patterns create unique chemical environments, as river water typically contains higher
concentrations of bioavailable carbon and dissolved oxygen, leading to greater biomass growth in
losing streams [212, 214].

Flow dynamics operate across multiple scales, from pore-scale processes to reach-scale
exchange patterns. Studies have shown that higher flow velocities enhance nutrient and oxygen
transport, potentially supporting greater steady-state biomass concentrations, though excessive
speeds can cause biomass scouring [21, 215, 221]. However, research from chapter 5 of this

dissertation indicates weaker correlations between biomass and vertical (-.09) and longitudinal
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(.02) velocities than previously thought, which highlights the difficulty in predicting general
relationships between processes in the hyporheic zone.

Under high flow conditions, microbial communities exhibit remarkable adaptations.
Specifically, bacteria have been shown to increase extracellular polymeric substances (EPS)
production, forming stronger biofilms resistant to erosion [221, 222]. The EPS matrix serves
multiple functions beyond structural stability, including nutrient and enzyme retention, creating
favorable microenvironments for microbial growth. These adaptations are particularly important
in systems experiencing variable flow regimes, where maintaining attachment and metabolic
function under changing conditions is crucial [222].

Factors Impacting Biomass Growth in the Hyporheic Zone

Temperature propagation through the hyporheic zone, influenced by flow patterns, creates
distinct thermal regimes that affect microbial community structure and function. Seasonal
temperature variations have been shown to lead to shifts in microbial community composition
[223]. Furthermore, temperature has been show to generally impact a variety of biogeochemical
process rates, including organic matter decomposition and nutrient cycling [224]. The thermal
characteristics of the hyporheic zone are particularly important in the context of climate change,
as temperature shifts can fundamentally alter microbial community structure and function.
Temperature fundamentally controls microbial metabolism and growth through multiple
simultaneous mechanisms. Ratkowsky and colleagues established that while mesophilic bacteria
thrive between 20-45°C, distinct adaptations enable psychrophiles and thermophiles to function
effectively outside this range [225]. Morita's research on psychrophilic bacteria revealed

specialized adaptations allowing growth below 20°C [226], while Schoolfield et al. demonstrated
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that growth rate-temperature relationships typically follow modified Arrhenius kinetics, with rates
approximately doubling for every 10°C increase until reaching an optimal temperature [227].

At a molecular scale, deviations beyond optimal temperatures lead to protein
denaturation, enzyme inactivation, and membrane damage [228]. Furthermore, temperature not
only influences cellular components but also substrate diffusion rates and enzyme kinetics,
creating complex feedback loops in microbial growth responses [229]. These temperature-
dependent processes become particularly relevant in the hyporheic zone, where thermal
gradients can create distinct zones of microbial activity.

The influence of pH on bacterial growth extends beyond simple growth rate effects. While
most species prefer conditions between pH 6.5-7.5, Horikoshi's work on alkaliphiles demonstrated
remarkable adaptations allowing growth in extreme pH conditions [230]. Furthermore, studies
have shown how pH affects multiple cellular processes simultaneously, including membrane
transport, protein stability, energy metabolism, and cell wall integrity [231]. Thus, changes in
environmental pH require significant energy expenditure to maintain the normal function of these
cellular processes (i.e., cellular homeostasis), reducing growth efficiency and yield [232].

The relationship between nutrient availability and microbial growth, initially described by
Monod's classical equation [233], has been significantly refined through modern research.
Following work challenged the concept of fixed growth constants, suggesting instead an
"uncertainty principle" in bacterial growth kinetics that better reflects the complexity of natural
systems [234]. Furthermore, investigations into nutrient-limited transport revealed how bacteria
respond to nutrient limitations through various adaptive mechanisms, including changes in cell

size, morphology, and metabolic pathways [235].
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Oxygen availability dramatically influences bacterial growth patterns in the hyporheic
zone. Aerobic bacteria typically require dissolved oxygen levels above 2 mg/L for optimal growth
[236]. Without oxygen, anaerobic bacteria may still thrive, although they generally exhibit lower
growth rates due to less efficient energy generation pathways [237]. Bacterial respiratory systems
have also shown remarkable flexibility, with many bacteria being able to adapt to varying oxygen
levels by modifying their respiratory chains or switching between aerobic and anaerobic
metabolism [238]. Stolper and colleagues further demonstrated that some bacteria can maintain
aerobic metabolism at extremely low oxygen concentrations - as low as nanomolar levels - through
specialized high-affinity oxidases [239]. This adaptability becomes particularly important in the
hyporheic zone, where oxygen gradients can shift rapidly with changes in flow conditions.

Environmental stressors significantly impact microbial growth and community structure.
Studies have detailed how heavy metals can inhibit growth through multiple mechanisms,
including direct enzyme inhibition, membrane damage, DNA/RNA damage, and oxidative stress
[240]. However, many bacteria have also developed various resistance mechanisms to metal
toxicity [241].

Competition between bacterial species adds another layer of complexity to community
dynamics. Direct competition for nutrients, production of inhibitory compounds, and modification
of shared environments have been shown to influence community structure [242]. Hibbing et al.
further elaborated on bacterial competition strategies, demonstrating how bacteria may respond
through enhanced substrate uptake systems, production of antimicrobial compounds, or
metabolic specialization [243].

Temporal and Seasonal Dynamics
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Temporal variations in hyporheic zone processes create distinct patterns of biogeochemical
activity. During summer months, warm temperatures propagate throughout the hyporheic zone,
increasing growth rates [221, 222]. Winter conditions lead to reduced growth due to cold
temperature propagation, though research has shown that specialized cold-adapted communities
can maintain significant activity [244].

Nonperennial streams present unique challenges for microbial communities. Dry periods
often create isolated pools with varied redox conditions [245], resulting in the development of
specialized microbial populations in these environments [246]. These conditions can favor
anaerobic processes such as denitrification [247] and iron reduction processes [248]. Microbes in
nonperennial stream have also shown special adaptations that allow them to go dormancy during
dry events and reemerge during wetting events, thus stimulating rapid changes in microbial

community composition and function [249].

1.1.2 Particle Tracking
1.1.2.1 Introduction and Fundamental Concepts
Particle tracking, the analysis of video data to reconstruct object or organism trajectories, has
become an essential quantitative tool across scientific disciplines, from biology and physics to
environmental science and engineering. The foundational framework for modern particle tracking
emerged through Crocker and Grier's seminal work, which introduced a robust algorithm for
linking particle positions across video frames by minimizing total squared displacement [250]. This
approach provided solutions for key challenges in particle tracking, including noise handling,
particle density limitations, and position linking across frames.

The technical challenges in particle tracking arise from several key factors that must be

addressed simultaneously. First, the accurate detection of particles requires sophisticated image
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processing to distinguish true particles from noise and background variations. Second, the linking
of particle positions between frames becomes increasingly complex with higher particle densities
and faster movement speeds. Third, measurement uncertainties and detection failures must be
handled robustly to maintain tracking accuracy over long trajectories. These challenges have
driven the development of increasingly sophisticated algorithms and methodologies [251, 252].

The evolution of experimental techniques, particularly in microscopy and video
technology, has continuously expanded tracking capabilities. Super-resolution microscopy
techniques, exemplified by Betzig's work, pushed the boundaries of spatial resolution in particle
detection [253], while improvements in high-speed imaging enabled the capture of rapid
dynamics previously impossible to resolve. These technological advances have been
complemented by the development of sophisticated tracking algorithms, including multiple
hypothesis tracking (MHT) and probabilistic data association filters (PDAF), which have
significantly improved tracking reliability in complex environments [252, 254].
1.1.2.2 Development of Tracking Algorithms
The evolution of particle tracking algorithms reflects the increasing complexity of tracking
applications and the need for robust performance under challenging conditions. The earliest
successful approaches relied on nearest-neighbor linking methods, but these proved insufficient
for dense particle fields or complex motions. A significant advance came with the development of
global linking strategies that consider multiple frames simultaneously to optimize trajectory
reconstruction [250]. These methods minimize the global displacement across all possible particle
matches, significantly improving tracking accuracy in complex scenarios.

Multiple hypothesis tracking (MHT) represented a major algorithmic breakthrough,

particularly for biological applications. Jagaman and colleagues demonstrated that MHT could
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effectively handle particle merging and splitting events, temporary particle disappearance, and
dense particle fields [252]. The method works by maintaining multiple possible trajectory
hypotheses and selecting the most probable set of tracks based on all available information,
making it particularly robust for tracking in biological systems where object interactions are
common and frequent. The probabilistic data association filter (PDAF) approach, adapted for
biological applications by Smal et al., provided a framework for explicitly handling measurement
uncertainties [254]. This method is particularly valuable when tracking particles in low signal-to-
noise conditions or when dealing with closely spaced targets. PDAF works by computing
association probabilities between measurements and tracks, allowing for multiple potential
measurement-to-track assignments and effectively handling uncertainty in the measurement
process.

Some of the biggest breakthroughs in imaging techniques for particle tracking revolve
around 3D tracking [258-260]. 3D tracking is technically challenging due to the algorithmic
complexity of matching trajectories, fundamental difficulties in accurate depth determination and
particle localizations, and increased computation time. Furthermore, 3D tracking, especially in
porous media, represents a challenging problem due to the refraction of light around clear,
synthetic grains, which may obfuscate or distort bacteria [2, 259, 260].

Comprehensive evaluation efforts have been crucial in understanding the strengths and
limitations of different tracking approaches. Chenouard et al.'s objective comparison of particle
tracking methods provided the first standardized assessment of various algorithms across different
experimental conditions [255]. This work established benchmark datasets and evaluation metrics

that continue to guide algorithm development and selection for specific applications. Recent
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algorithmic developments have focused on improving computational efficiency and robustness
while maintaining high accuracy in challenging scenarios [256, 257].

1.1.2.3 Applications in Environmental Science

Particle tracking methods have become fundamental tools for studying transport phenomena in
environmental systems, particularly in porous media where complex geometry and flow patterns
significantly influence particle and microorganism movement. The application of these techniques
has enabled direct observation of processes previously only understood through bulk
measurements or theoretical predictions [251]. High-speed imaging combined with sophisticated
tracking algorithms has revealed detailed dynamics of both abiotic particle transport and
microbial motility in these complex environments.

In the study of solute transport, particle tracking methods have provided unprecedented
insights into the spatial heterogeneity of porous media flow. By tracking individual particles or
fluorescent tracers, researchers can directly observe preferential flow paths, stagnation zones, and
mixing behavior at the pore scale [254, 255]. These observations have proven crucial for validating
and refining theoretical models of dispersion and mixing in porous media, particularly in systems
where traditional bulk measurements fail to capture important local phenomena.

The application of particle tracking to microbial systems has revolutionized our
understanding of bacterial transport and behavior in environmental contexts. These methods
enable researchers to analyze individual bacterial trajectories, revealing how motility patterns
change in response to environmental gradients, flow conditions, and surface interactions [215].
Particularly valuable has been the ability to distinguish between active bacterial movement and

passive transport, providing insights into how microorganisms navigate and colonize porous
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environments. The integration of tracking techniques with microfluidic devices has allowed for
controlled studies of bacterial behavior under various environmental conditions [223].

For biofilm studies, particle tracking has enabled detailed investigation of the early stages
of bacterial attachment and colonization. By tracking individual cells as they transition from
planktonic to sessile states, researchers can better understand the mechanisms controlling biofilm
formation and development [225]. These observations have practical implications for various
environmental applications, from bioremediation to the management of bacterial fouling in
industrial systems.
1.1.2.4 Current Challenges and Future Directions
Several key challenges persist in particle tracking applications, particularly for environmental
systems where complex geometries, multiple scales of motion, and variable imaging conditions
create significant technical difficulties. One fundamental challenge involves maintaining tracking
accuracy when particles or organisms move across different focal planes or temporarily disappear
from view, especially in three-dimensional porous media systems [255]. The development of more
robust algorithms for handling these scenarios remains an active area of research, with recent
work focusing on probabilistic methods that can maintain track continuity despite temporary loss
of information [252, 256].

Technical advances in imaging capabilities continue to drive new applications in
environmental science. High-speed cameras with improved sensitivity and resolution enable
tracking of faster processes and smaller objects, while advances in 3D imaging techniques [258]
allow for better characterization of transport in complex porous media. Future areas of research

also include automatic analysis platforms, more robust comparisons between different PT
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algorithms, and deep learning models for both the segmentation of particles and linking of

trajectories.

1.1.3 Deep Learning for Particle Tracking and Reactive Transport

1.1.3.1 Introduction and Fundamental Deep Learning Concepts

Deep learning has emerged as a transformative tool in scientific computing, particularly for
analyzing complex physical systems and processing large-scale experimental data. The foundations
for these advances were established through breakthroughs in neural network training
methodologies, including efficient backpropagation algorithms and GPU acceleration [261]. The
2012 ImageNet competition marked a pivotal moment when convolutional neural networks
(CNNs) demonstrated unprecedented performance in image recognition tasks [262], catalyzing
widespread adoption across scientific domains.

The application of deep learning to scientific problems has been enabled by several key
technological developments. First, the development of specialized architectures like region-based
CNNs and the YOLO (You Only Look Once) framework provided efficient tools for real-time object
detection [263]. Second, the introduction of self-supervised learning approaches, exemplified by
Momentum Contrast (MoCo) [264] and SimCLR [265], enabled effective learning from unlabeled
data - a crucial capability for scientific applications where labeled data is often scarce. These
advances have proven particularly valuable in environmental science and hydrology, where
complex, high-dimensional problems demand sophisticated analytical approaches.

Recent reviews have highlighted how deep learning is also revolutionizing microscopy and
particle tracking applications [266]. The key advantage of deep learning approaches lies in their
ability to handle noise, variability, and complex backgrounds while maintaining high processing

speeds. These capabilities have proven especially valuable in biological imaging, where traditional
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methods often struggle with low signal-to-noise ratios and variable imaging conditions. They have
shown particular promise for the segmentation and localization of cells/particles, but have only
shown mild benefits for the task of trajectory linking/extraction.

1.1.3.2 Deep Learning Methods in Particle Detection and Tracking

The integration of deep learning into particle tracking has revolutionized our ability to analyze
complex dynamic systems at multiple scales. A significant breakthrough came with Newby et al.'s
work using CNNs to detect and track particles in dense suspensions, demonstrating superior
detection performance compared to traditional methods, particularly in challenging scenarios
with high particle density and low signal-to-noise ratios [267]. This approach has since been
expanded through various specialized architectures and methodologies designed specifically for
biological and physical applications.

Recent advances in deep learning-based tracking have addressed several key technical
challenges. Yao and colleagues developed sophisticated data association methods that
significantly improve tracking accuracy in complex biological environments [268]. Their approach
specifically tackles the challenging problem of linking particle detections across frames, a critical
issue in biological tracking applications. Spilger et al. further advanced the field by introducing a
deep particle tracker specifically designed for fluorescence microscopy, demonstrating robust
performance across varying imaging conditions [269].

The application of deep learning to live-cell imaging has enabled unprecedented insights
into cellular dynamics. Song et al. developed automated multidimensional tracking systems
capable of following particle movement in living cells with high precision [270], while Ritter and

colleagues enhanced particle detection and tracking capabilities in fluorescence microscopy
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through specialized neural network architectures [271]. These advances have been particularly
valuable for studying bacterial motility and cellular transport processes.

Cell tracking and lineage reconstruction represent another frontier where deep learning
has made significant impacts. Moen et al. demonstrated accurate cell tracking and lineage
construction in live-cell imaging experiments [272], while Lugagne and colleagues developed
DelTA, an automated system for cell segmentation, tracking, and lineage reconstruction [273].
These tools have proven invaluable for studying bacterial population dynamics and cell-cell
interactions in complex environments.
1.1.3.3 Physics-Informed Neural Networks and Reactive Transport
The integration of physical principles with deep learning architectures has created powerful new
tools for modeling transport phenomena. Physics-informed neural networks (PINNs), introduced
by Raissi et al., provide a framework for incorporating physical laws directly into neural network
architectures [274]. This approach ensures that predictions respect fundamental physical
constraints while leveraging the flexibility and computational efficiency of deep learning models.
Kang et al. extended this concept by coupling generative adversarial networks with physics-driven
models for inverse groundwater modeling [275], demonstrating improved predictions of
contaminant transport in heterogeneous aquifers.

Recent advances in reactive transport modeling have focused on bridging scales and
reducing computational costs. You and Lee developed deep learning methods for upscaling
reactive transport models from pore-scale to continuum-scale [276], while Wang and Battiato
created a framework specifically for modeling reactive transport and mineral precipitation in
fracture-matrix systems [277]. These approaches have significantly reduced computational

requirements while maintaining accuracy. Leal et al. demonstrated the power of machine learning
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for accelerating chemical equilibrium calculations in reactive transport modeling [278], while
Prasianakis et al. developed neural network approaches for process coupling and parameter
upscaling [279].

The application of deep learning to multiphysics problems has enabled new approaches
to complex system modeling. Jagtap et al. developed a framework to capture mixing patterns in
reactive-transport systems [280], while Lu et al. created data-informed emulators for multi-physics
simulations [281]. These advances have been particularly valuable for environmental applications,
where multiple physical and chemical processes interact across different scales. Recent work by
Basha et al. has further advanced the integration of machine learning with physics-driven
modeling for multiphase systems [282].
1.1.3.4 Advanced Architectures and Multiphysics Applications
Advanced neural network architectures have emerged as powerful tools for modeling complex
physical systems. Graph neural networks, as demonstrated by Sanchez-Gonzalez et al., have
proven particularly effective for modeling many-body systems and particle interactions [283]. The
transformer architecture, introduced by Vaswani et al. [284], has been adapted to capture long-
range dependencies in particle trajectories and chemical reaction networks, enabling more
accurate predictions of system behavior over extended time periods.

Generative models have found novel applications in environmental and physical modeling.
Laloy et al. demonstrated the use of spatial generative adversarial networks for creating
geologically realistic permeability fields [285], while recent climate modeling work by Yu et al. has
shown how deep learning can emulate high-resolution physics in hybrid multi-scale simulators
[286]. These approaches have been particularly valuable for generating realistic subsurface

property fields and modeling complex environmental systems.
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The application of deep learning to computational fluid dynamics and multiphysics
simulations has seen significant advances. Obiols-Sales et al. developed CFDNet, demonstrating
substantial acceleration of fluid simulations through deep learning [287], while Koric and
Abueidda applied deep learning sequence methods to multiphysics modeling of materials
processes [288]. Gunawardena et al. extended these approaches to atmospheric transport models
[289], showing how machine learning emulation can effectively capture complex spatial
deposition patterns. Mo et al. demonstrated the use of deep convolutional encoder-decoder
networks for uncertainty quantification in dynamic multiphase flow [290], while recent work has
focused on developing hybrid approaches that combine the efficiency of deep learning with the
physical accuracy of traditional numerical methods. These developments have enabled new
applications in environmental monitoring, industrial process optimization, and scientific discovery.
1.1.3.5 Current Applications and Future Directions
Deep learning applications in particle tracking and reactive transport continue to expand, driven
by both technological advances and practical needs. In biological imaging, recent developments
have enabled automated analysis of increasingly complex cellular behaviors. The integration of
deep learning with traditional microscopy has enhanced our ability to track multiple particles
simultaneously while maintaining high temporal and spatial resolution [265, 270]. These advances
have proven particularly valuable for studying bacterial motility patterns, cell-cell interactions, and
biofilm formation dynamics in real-time.

The coupling of machine learning with physics-based modeling represents a rapidly
evolving frontier. Recent work has demonstrated significant progress in developing hybrid
approaches that combine the computational efficiency of neural networks with the physical

accuracy of traditional numerical methods [281, 282]. These hybrid models are particularly

49



promising for environmental applications, where complex multiscale processes must be simulated
efficiently. Emerging research focuses on developing interpretable deep learning models that can
provide insights into the physical mechanisms underlying observed phenomena while maintaining
computational tractability.

Several key challenges and opportunities in this domain include the development of self-
supervised and few-shot learning approaches to address the scarcity of labeled data in scientific
applications, integration of uncertainty quantification in deep learning predictions for improved
reliability in scientific applications, creation of scalable architectures capable of handling
increasingly large and complex datasets, and development of physics-informed approaches that
can effectively bridge multiple spatial and temporal scales [276, 277]. The future of this field
appears to be moving toward increasingly sophisticated hybrid approaches. These include the
development of neural network architectures that can automatically map and incorporate physical
laws [278, 279], the use of reinforcement learning for optimizing experimental designs, and the
application of federated learning techniques for collaborative modeling of reactive transport
processes. As computational capabilities continue to advance, these methods are expected to
enable new insights into complex environmental and biological systems that were previously

difficult to study.

1.2  Purpose and Scope

1.2.1 Original Intent
The original intent of this research was to explore and develop scalable models for microbe-
mediated reactive transport processes, specifically focusing on bacterial motility, chemotaxis, and

bacterial transport at the pore and field scales. Our hypothesis was (and still is) that an improved
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understanding of these processes and the development of more accurate models would allow us
to gain further insight into the complex interactions between hydrodynamics, microbial motility,
and biofilm structure in porous media.

The study was initially designed to investigate how different microbial species contribute
to reactive transport, particularly in subsurface environments where fluid flow and chemical
gradients play a significant role in determining microbial activity and nutrient cycling. By
integrating experimental observations with computational models, the goal was to provide
mechanistic insights into microbial motility, biofilm development, and their collective impact on
reactive transport. Specifically, our intent for future chapters was to upscale our experimental
results at the micro scale to the pore and field scales, thus enhancing models of microbial motility
across all scales. In addition, we sought to investigate the impact of micro-scale motility processes

on field-scale bioremediation, which is a phenomena that is currently poorly understood.

1.2.2 Broadening of Scope

As the research progressed, it became clear that additional complexities related to microbial
behavior and environmental conditions necessitated a broadening of the original scope. While the
initial focus was on microbial motility across a range of scales, the research expanded to include
more comprehensive analyses of particle tracking, biomass growth in the hyporheic zone, and
deep learning tools for particle tracking and reactive transport simulation upscaling.

One of the key reasons for the broadening of scope was the fact that our micro-scale
research turned out to be more challenging than what was originally predicted. These challenges
primarily revolved around difficulties in image analysis that required the development of a novel
background subtraction algorithm and experimentation with numerous particle tracking methods.

This delay in the production of results shifted our timeline. Furthermore, we realized that our

51



experiments with comparing the performance of multiple particle tracking algorithms had
produced interesting results that were worth trying to publish. Rather than continue with our
original plans to move on to upscaling our micro-scale results to the pore scale, we decided to
pursue the research that was ready to go.

After two and a half years of my PhD, both of these chapters were nearly complete, and
the next object of our focus was to incorporate the results from our micro-scale investigations of
microbial motility into field-scale reactive transport simulations. The plan for this chapter was to
use published research on field scale bioremediation that uses some reactive transport simulator
to model the in-situ data. By adapting the model previously used in the published research to
include microbial motility parameters, we hoped to gain insight into how bacterial motion impacts
the fit between the model and the experimental data. However, due to a variety of complications,
we ultimately weren’t able to achieve these goals. One of the primary barriers we faced is that
there is only one study we could find that has both in-situ data and a reactive transport model in
a well-supported framework for bioremediation at the field scale [291]. To further complicate
matters, the model was originally created in STOMP. However, STOMP is a proprietary code that
requires a license to run, meaning we needed to port the simulation to PFLOTRAN. We spent
multiple months trying to rewrite the simulation in PFLOTRAN, but were ultimately unable to
reproduce the time series from the published research given the complexities of the reactions that
were modeled. Luckily, we were able to pivot our objectives as we were working on this chapter
that never came to be, which resulted in a significant broadening of scope. We still wanted to
explore microbe-mediate reactive transport processes at large scales, which resulted in our pivot
to investigate the feedback mechanisms of biomass growth in the hyporheic zone and the velocity-

based decay of biomass. Although this chapter no longer uses our micro-scale research to improve
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Darcy and field-scale reactive transport simulations, we calibrated our velocity-based biomass
decay based on others’ micro-scale research, thus completing our objective to upscale microbial
physics in some way.

In addition to our pivot in large-scale studies of microbial physics, we also actively decided
to look for applications of deep learning within our research. Specifically, we identified significant
gaps in the literature for applications of deep learning to particle tracking and reactive transport
upscaling. Thus, two chapters of this dissertation are devoted to applications of deep learning
within the broad domain of microbe-mediated reactive transport. Although other directions may
have provided for more thorough investigations of microbial motility or reactive transport
modeling, the expansion of this dissertation through comparative analysis and deep learning tools
provides for a much more rigorous analysis of particle tracking, which is the primary tool used to
understand microbial motility. Furthermore, this broadening of scope increases its relevancy to a

wider audience and provides more points to design further studies from.

1.2.3 Organization of Disseration

This dissertation is organized into 7 separate chapters. Chapter 1 is the current chapter, which
gives readers most of the background knowledge needed to understand the contributions of the
dissertation (chapter 1). This introduction was created with the intention of being an in-depth
summary of the basic theories explored throughout this dissertation. Instead of providing
introductions that thoroughly link the concepts of each chapter, this introduction serves to
establish current knowledge of these links, and the concluding chapter is used to link the different
results of each chapter in the context of the studies cited in this introduction. If readers find
themselves confused about chapter progression, they should refer back to the abstract and

introduction. After the background and literature review, the introduction continues with sections

53



detailing the original plans for the thesis, the broadening of its scope over time, the organization
of the dissertation (this section), which provides an overview of each chapter along with a
conceptual diagram of the whole dissertation (Fig. 1), and the primary contributions it delivers to

the research community.
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Figure 1. Conceptual diagram of the applications of the various chapters of this dissertation. Chapter 2
focuses on microbial motility, chapter 3 focuses on particle tracking (with applications to chapter 2), chapter
4 focuses on a novel deep learning model (named DeepTrackStat) for the extraction of motion statistics from
videos of dispersing particles (with applications to chapters 2 and 3), chapter 5 focuses on the incorporation
of novel physics in reactive transport simulations, and chapter 6 focuses on the deep-learning-based
upscaling of reactive transport simulations. Chapter 6 also shares similarities with chapter 4 with regards to
using deep learning to process spatiotemporal inputs, and chapter 2 contains information that, while not
explicitly used in this dissertation for chapter 5, may be used to improve the reactive transport simulations
featured in chapter 5. Chapter 4 is shaded a different color (orange) because although it was developed for
micro-scale applications (yellow), it may also be applied to videos of particle transport at larger scales (red).
These chapters act to improve various aspects of microbe-mediated reactive transport, culminating in a
dissertation that contains a variety of new tools and insights that may be used to help improve
environmental management strategies.
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The dissertation then moves to an investigation of the advection-dominated transport
dynamics of pili and flagella-mediated motile bacteria in porous media (chapter 2). This chapter
focuses on understanding the dynamics of bacterial transport in microfluidics experiments for
three different species of motile bacteria under varying flow rates and porosities. In this chapter
bacterial transport is characterized through turn angle and speed distributions, mean square
displacements, and dispersion coefficients. Furthermore, OpenFOAM simulations are used to
model the Eulerian flow field of our microfluidic geometries to allow for comparison between the
bacterial speed distributions and the speed distributions of the flow fields. The results of this
chapter show that higher flow rates suppress bacterial motility, leading to advection-dominated
transport, where bacterial motion is primarily driven by the flow of fluid. Furthermore, it is shown
that at high flow speeds bacteria with peritrichous flagella maintain their motility characteristics
to a higher degree than bacteria with monotrichous flagella or pili do.

Next, the dissertation presents an evaluation of particle tracking (PT) codes used for
dispersing particles in porous media (chapter 3). Specifically, this chapter primarily investigates
tracking performance for particles in similar environments to our microfluidic experiments
performed in chapter 2. Using a suite of classical and experimental comparison statistics, and
visual analysis of trajectories, this chapter provides a rigorous comparison between four different
PT algorithms: V-TrackMat, TrackMate-Kalman, TrackMate-LAP, and Trackpy. The results of this
chapter show the importance of a wholistic and task-relevant approach to using statistical
comparisons to measure differences in PT algorithm performance. Concomitantly, these results
highlight the poor performance of all PT algorithms in situations of high speed, high density
particle simulations, and further show the impact of this poor performance on statistics relevant

for bacterial transport.
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In response to the challenges identified in particle tracking, this dissertation next
introduces DeepTrackStat, an end-to-end deep learning framework for the extraction of motion
statistics from videos of particles (chapter 4). DeepTrackStat (DTS) is designed to automate and
enhance the process of generating speed, velocity component, and turn angle statistics,
particularly in complex and high-speed environments where traditional methods fall short. The
deep learning framework efficiently processes large datasets, allowing for fast and accurate
motion extraction from videos of dispersing particles in porous media. To make DTS as robust as
possible, it was trained on variations in flow/motion type and speed, and particle density, shape,
brightness. We show that DTS generally performs better and is also faster than classical particle
tracking algorithms. Furthermore, DTS shows especially good performance for high-speed
particles.

Next, this dissertation explores nutrient cycling and speed-based biomass decay in the
hyporheic zone (chapter 5). Using 344 different simulations of biomass growth in the hyporheic
zone, this chapter presents a comprehensive sensitivity analysis of the major feedback cycles
present. Furthermore, this chapter presents a sensitivity analysis of speed-based biomass decay,
finding that the calibrated parameters are not very sensitive, but that weakly cohesive biofilm
connections, represented by a low value of our parameter 8, will significantly impact biomass
growth. In this chapter we further investigate general trends of our simulations in relationship to
chromium reduction. Overall, we find that reduction is primarily dominated by abiotic processes,
but that biomass growth can lead to reduction hotspots.

One of the limitations identified in chapter 5 is that many of the simulations are only for
a small 1x2 meter scale, which reduces the generalizability of the results. To address this concern,

and make general improvements to reactive transport modeling, chapter 6 of this dissertation
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details the development of STAMNet, a spatiotemporal attention-based neural network for
upscaling reactive transport simulations. STAMNet overcomes the traditional computational
limitations of reactive transport simulations by leveraging deep learning to capture the
spatiotemporal dependencies in reactive transport processes. The network is trained to recognize
patterns at a 1x2 meter scale and use them to predict behavior at a 1x20 meter scale, offering a
significant improvement in simulation efficiency compared to RT simulators. STAMNet was applied
to scenarios involving biomass growth and the transport of contaminants like chromium (Cr(V1)),
demonstrating its capability to handle real-world environmental problems. By incorporating a
novel spatiotemporal attention mechanism, STAMNet was able to focus on the most relevant
spatial and temporal features, providing more accurate predictions of large-scale transport
phenomena than other simpler neural architectures could.

Chapter 7 then presents a summary of the information in, and synthesis of the
relationships between, the five primary chapters (chapters 2-6), then finishes with the conclusion
of this dissertation. This chapter discusses how the dissertation as a whole contributes to
advancements in microbial transport understanding, particle tracking methodologies, and reactive
transport modeling. Furthermore, this chapter highlights our contributions from the micro-scale
to the field scale, discusses relevant contributions to bioremediation, and gives a road map for
potential future research. This dissertation is then concluded with a summary, and a discussion of
limitations and future work. Ultimately, this dissertation was created to provide researchers with
new theories, models, and tools surrounding microbe-mediated reactive transport, with the hope

that these advancements will allow for further development of knowledge in this domain.

1.2.4 Research Contributions
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This dissertation makes several significant contributions across different areas of microbe-
mediated reactive transport, particle tracking, and deep learning, advancing both theoretical
understanding and practical applications. The key contributions are outlined below:

1. Microbial Motility in Porous Media

a. Comprehensive Analysis of Multiple Bacterial Species: Prior studies often focused on a
single bacterial species or simplified flow conditions. This dissertation advances the
field by directly comparing the motility of bacteria with different mechanisms (e.g.,
flagella, pili) under various flow rates and pore geometries. This comparative study
enhances the understanding of microbial behavior in a variety of flow conditions and
provides critical insights into how diverse bacterial communities may behave in
subsurface conditions. Specifically, this chapter shows that bacteria with peritrichous
flagella maintain their motility characteristics at higher flow speeds than bacteria
without flagella and with monotrichous flagella.

b. Linking Microscale Behavior to Macroscale Transport: The identification of a transition
from motility-driven to advection-dominated transport at higher flow rates bridges
the gap between small-scale bacterial behavior and larger-scale transport
phenomena. This is crucial for developing accurate upscaling techniques, informing
when simplified, advection-based models are appropriate for describing bacterial
transport in high-flow scenarios.

2. Particle Tracking in Porous Media

a. Comprehensive Evaluation of Particle Tracking Methods: This dissertation evaluates
multiple particle tracking (PT) algorithms across a wide range of flow conditions for
transport of particles in porous media. By rigorously comparing tracking methods

under complex scenarios, this work offers valuable guidance for researchers in
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selecting appropriate tracking methods, designing experimental setups, and making
appropriate performance comparisons for the tracking of dispersive particles in
porous media.

b. Development of DeepTrackStat: The creation of DeepTrackStat, a class-based
ensemble deep learning framework, represents a significant advancement in the
general field of particle tracking. DeepTrackStat is specifically designed for the
extraction of motion statistics, meaning it does not allow for trajectory reconstruction
like traditional particle tracking methods do. However, for the task of motion statistic
extraction, it overcomes many limitations of traditional PT methods. It dramatically
enhances the speed and accuracy of extracting motion statistics from particle videos,
especially for high-particle-speed scenarios, meaning it is a powerful tool that
researchers can add to their particle tracking toolbox.

3. Nutrient Cycling and Biomass Growth in the Hyporheic Zone

a. Coupling Physical, Chemical, and Biological Processes: This research provides a
comprehensive analysis of feedback cycles in the hyporheic zone, explicitly
considering the interactions between flow conditions, nutrient availability, and
biomass growth. This holistic approach goes beyond previous studies, which often
considered these factors in isolation, advancing the understanding of nutrient cycling
and biomass dynamics in critical environmental interfaces.

b. Refining Paradigms in Chromium Reduction: The finding that abiotic processes
generally dominate chromium reduction in high-nutrient scenarios refines the existing
paradigm of the competition between abiotic and biotic reduction. Furthermore, the
finding that high biomass concentrations result in hot spots of chromium reduction

adds additional nuance to our understanding of chromium remediation. These
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insights underscore the importance of considering both biotic and abiotic pathways
in contaminant models, especially for the design of more effective remediation
strategies for redox-sensitive contaminants.

4. Reactive Transport Simulations

a. Introducing a Velocity-Based Biomass Decay Model: The development of a velocity-
based biomass decay model used within PFLOTRAN is a significant contribution to the
general field of reactive transport simulations (and specifically for the sub-field of
microbe-mediated reactive transport). It captures the influence of fluid shear on
biofilm stability and growth, which has often been oversimplified in prior research.
This more realistic representation of biofilm dynamics is crucial for accurately
predicting contaminant fate, transport and nutrient cycling in flowing subsurface
systems.

b. Creation of STAMNet for Scalable Simulations: Another major contribution of this
dissertation is the development of STAMNet, a spatiotemporal attention-based neural
network for reactive transport simulations. STAMNet addresses one of the most
persistent challenges in the field—scaling models to field-relevant sizes without losing
important spatial and temporal details. By capturing complex dependencies in
reactive transport processes, STAMNet opens new possibilities for efficient, large-
scale simulations.

c. Applying Deep Learning for Physical Upscaling: The use of deep learning for physically
meaningful upscaling is another notable contribution of this dissertation. STAMNet
demonstrates that deep learning can maintain critical spatial and temporal

relationships in reactive transport processes, something often lost in more simplified
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upscaling methods. This advancement extends the growing field of deep learning
applications in environmental science and geosciences.
These contributions represent significant advancements in microbial motility research, particle
tracking methodologies, large-scale simulation models, and understanding the dynamic processes
in the hyporheic zone. Ultimately, this dissertation provides a robust framework for future
research and practical applications in the general fields of environmental management and

bioremediation.
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Chapter 2: Advection-Dominated Transport Dynamics of Pili and Flagella-
Mediated Motile Bacteria in Porous Media

2.1 Abstract
The transport of motile bacteria in porous media is highly relevant to many fields, ranging from
ecology to human health. Still, critical gaps remain in our understanding of the impacts of motility,
hydrodynamics, and pore structure on bacterial transport. Here, we present direct visualizations
of three species of motile bacteria under variable flow rates and porosities. We find that at higher
flow rates, motility is less critical to the transport of bacteria, as motion is controlled by
hydrodynamic advection, making it difficult for bacteria to move across streamlines. We show that
this lack of motion across streamlines results in increased velocity autocorrelation and bacterial
spreading in the direction of flow. Furthermore, we find that transport of bacteria with different
motility types are impacted by flow rates to different extents. At low flow rates, the transport of
bacteria with pili-mediated twitching motility is strongly controlled by advection, whereas bacteria
with flagella still display active motility. At higher flow rates, we show that bacteria with
peritrichous flagella maintain their motility characteristics to a greater degree than bacteria with
pili or monotrichous flagella. We also examine experimental net speeds of bacteria in relation to
the simulated flow fields and find that the interactions between hydrodynamics, motility, and
porous media geometry lead to oversampling of medium-velocity regions of a pore network by all
three species. The study presents new perspectives on how different types of motile bacteria are

transported and dispersed in porous media aided by strength of differentially advecting fluid.
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2.2. Introduction
Motile bacteria often live in dynamic flow environments, and their migration involves complex
self-propulsion strategies that are relevant to human health and ecology [1-3]. Navigating
confined spaces of a pore network, motile bacteria employ diverse movement modalities (e.g.,
turn angles, run-and-tumble, or run-and-flick) that characterize their migration [4—9]. In porous
media, the degree of confinement (i.e., porosity) and speed of the fluid flow strongly affect
bacterial migration and modulate their interactions with the surrounding environment. This, in
turn, has a broad range of effects on bacteria, such as altering their movement [10], behavior [11],
resource acquisition [12], and signaling [13], thereby influencing their metabolic functions, spatial
distribution, and diversity. Spatial variations in flow velocities and the related changes in shear add
another level of complexity to the transport of bacteria. Transverse movement of bacteria from
low-shear to high-shear regions located near surfaces has been shown to result in the
accumulation of cells in low-velocity regions [14, 15]. This phenomenon, termed shear trapping,
has been identified as one major mechanism that drives initial colonization of curved surfaces and
microfluidic pore channels [16—18], leading to the formation of suspended biofilm structures [19,
20]. While these observations have led to improvements in our understanding of bacterial
transport in idealized systems, there are significant gaps in our ability to quantify and predict
transport behavior under complex conditions, such as in pore networks designed to produce the
hydrodynamics of natural porous media. Understanding the motile behavior of bacteria in
confined environments, in which they search for available physical space and move in response to
fluid flow, has implications for a wide range of applications, such as bioremediation [21], biofilm

formation [22, 23], and anticancer drug delivery [24].
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In this chapter, we report direct bacterial transport visualizations, at single-cell resolution,
of three different species of motile bacteria under variable flow conditions in a quasi-2D porous
media with different levels of pore confinement. Recent research conducted in microfluidic porous
chips has shown that while transport of non-motile bacteria is compact giving rise to a Gaussian
distribution of traveled distances (i.e., follows streamlines with negligible retardation due to mass
exchanges between fast and slow moving zones), the distribution of motile strains in the pore
spaces show both active retention and enhanced dispersion due to exchanges between fast flow
channels and low velocity regions closer to the grain surfaces [17, 25]. The presented work here
examines the transport dynamics of three motile species with an overarching goal of highlighting
key statistical differences in various transport metrics so that more informed modeling approaches
can be developed for upscaled transport simulations. Having an improved understanding of
dispersion rates and of the key factors that control dispersion, such as the velocity and turn angle
distributions, would provide robust ingredients for development of random walk based
approaches [25]. We focus on investigating Acidovorax strain JHL-9 [26], Geobacter sulfurreducens
[27], and Paenibacillus strain 300A [28] due to their common attribute of metal-reducing
capabilities. By studying these specific microorganisms, our research findings are especially
relevant to bioremediation and biogeochemical cycling in terrestrial environments [29-31].
Furthermore, our selection of these species is based on their distinct modes of motility. Using their
pili to attach to surfaces and pull themselves towards new locations [32], Geobacter
sulfurreducens exhibit twitching motility [33]. Paenibacillus 300A exhibit swimming motility,
presumably driven by peritrichous flagella [34]. Acidovorax JLH-9 [26] exhibit twitching motility,
consistent with genomic analysis of the strain, though transmission electron microscopy (TEM)

images of the strain suggest the presence of polar/monotrichous flagella, indicating the possibility
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of swimming motility as well. Swimmers generally move much faster than twitchers [32, 35-37],
providing a reasonable basis in this study to compare the two different motility types at different
flow rates. The primary focus of this dissertation chapter is not to decipher the fundamental
reasons for differences in the transport behaviors of the three selected species, but rather to
evaluate transport characteristics of bioremediation relevant species with different motility types
in order to help lay a framework for species-aware upscaling and macroscale transport
simulations.

We find that regardless of the motility type, as flow rates increase, individual cells have
trouble in moving across streamlines, resulting in weaker coupling between bacterial motility and
their overall transport characteristics. We show that as flow speed increases, bacteria disperse
faster in the direction of flow, due to a lower likelihood of motion across streamlines and an
increase in longitudinal displacement driven by differentially advecting fluid in a porous
environment. In other words, the distance between individual cells grows at a fast rate since cells
are less likely to make transverse movements (i.e., displacements across streamlines), and are
more likely to move longitudinally at a range of velocities produced by the parabolic nature of
laminar flow profiles. Furthermore, we show that the motility of Paenibacillus is less impacted by
flows in porous media than the motilities of Geobacter and Acidovorax, highlighting the strength
of peritrichous flagella-driven motility. Additionally, we provide evidence that motile bacteria tend
to oversample medium-velocity zones in porous media for the flow conditions tested in our
experiments. This work thus provides an improved picture of the transport of motile bacteria in
confined porous media under variable flow rates, especially in relation to the impact of flow on
different motility types, with implications for several applications where an understanding of pore-

scale transport and upscaling of bacterial transport is desired.
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The work presented in the chapter is an enhanced version of the in-review article:
“Berghouse, M. Perez, L.J., Plymale, A., Scheibe, T., & Parashar, R. Advection-Dominated Transport
Dynamics of Pili and Flagella-Mediated Motile Bacteria in Porous Media. Soft Matter. 2024
Specifically, more information is provided in the discussion about the limitations of the research
with respect to particle tracking, which is the primary motivation for chapters 3 and 4 of this
dissertation, and more information is provided about the potential ways in which our work can

contribute to mathematical descriptions of bacterial transport.

2.3. Materials and Methods

2.3.1 Bacterial Transport in Microfluidic Devices
To investigate the impacts of porosity, flow rate, and motility on bacterial transport, we recorded
high-resolution videos of three species of bacteria swimming in microfluidic devices [2,000 mm
width X 20 mm height (w X h)] at flow rates of O puL/h (no flow), 1 puL/h and 5 pL/h. The chosen
flow rates allow for comparative analyses of bacterial transport for the control condition of no-
flow, and when the magnitude of flow speeds and bacterial motility speeds are of a similar order.
The micromodels were made from polydimethylsiloxane (PDMS) and contained staggered pillar
arrays of different grain diameters and pore lengths, resulting in either low porosity (¢ = 0.42) or

high porosity (¢p = 0.60) micromodels. The mean fluid speeds (v,,) determined from flow rate

(Q), cross-sectional area (A), and porosity (¢) as v, = %, in the low porosity geometries were

16.5 p/s and 82.7 um/s, and the mean fluid speeds in the high porosity geometries were 11.6
um/s and 57.9 um/s, for the low and high flow rates, respectively. These correspond to fluid
speeds in the range of 1 m/day to 7.15 m/day which are medium to high speed values typically

observed in bioremediation applications in alluvial aquifer settings [38, 39]. We found conducting
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experiments at lower flow rates (< 1uL/h) in our micromodels challenging due to pump limitations
in establishing extremely low uniform rates and difficulties encountered by emergence of small
drift speeds even in absence of external flow gradients presumably due to imperfections in model
fabrication, small pressure aberrations at the inlet/outlet ports, small axial tilts, or potential
presence of extracellular polymeric substance gradient [40]. Using pore throat length (given in
section 2.2) as the characteristic length, and using the values of dispersion coefficients presented
later in section 3.1.2, the velocities generated in the experiments would result in Peclet numbers
approximately in the range of 0.25 to 16 — a range that allow us to make broad observations
though they may be not fully generalizable. Experiments at no-flow condition in an open
environment (i.e., without granular obstacles) were conducted with a subgroup of species in a
previous work [41], which provides insights into the species-aware departure from Fickian
diffusion in unconfined environments. After recording the videos from several replicates of
experiments, we used TrackMate [42] to track, extract, and reconstruct thousands of trajectories
(ranging in length from low tens of microns to several hundred microns) of individual cells (Fig. 1).

To account for the small drift observed in no-flow experiments from one end of the

micromodel to the other, we calculated the background flow (drift speed) by computing the rate
. . . 1 d .
of change in the location of the centroid as v; = ;2’53 (7:m), Where 1., is the center of mass (x

and y positions) of all bacteria in a frame at no-flow, and k is the number of frames (in our case,
k = 30). To include the greatest number of possible trajectories for this calculation, we reset the
starting point of all trajectories to t = 0. We calculated mean drift speeds for Acidovorax (0.29
um/s), Geobacter (1.41 um/s) and Paenibacillus (0.59 pm/s) separately. These drift speeds are

significantly small compared to the speeds produced in the low-flow and high-flow experiments

77



thus allowing us to treat the transport of bacteria in the two flow experiments as being solely

driven by the interplay between motility and hydrodynamics.

Figure 1. Experimental setup used to analyze bacterial transport in microfluidic devices. (a) A sketch of the
full micromodel from [41], which used the same basic micromodel schematic as our experiments. The left
black dot represents the inlet and the right dot represents the outlet. The black section represents an
unobstructed part of the micromodel, and the gray section represents the part of the micromodel with
cylinders. (b) Depiction of bacteria flowing (from left to right) through a section of the high porosity (¢ =
0.60) micromodel. The gray space represents the channels that fluid and bacteria travel through, and the
black circles represent the cylinders (also referred to as “grains”). The scale bar represents 120 um. Bacteria
are not drawn to scale. (c) Bacterial trajectories for Acidovorax obtained in 5-minute interval over the course
of the experiment in the high porosity micromodel at a flow rate of 1 uL/h. The colormap represents net
speed of bacteria, with warm colors representing high speeds and cool colors representing low speeds.
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Transport characteristics of bacteria were quantified using net speeds |v,|=

\/(Xt+1—xt)2 +Yer1—ye)?
At

)’t+z—J/t+1) — tan-1 ()’t+1—Yt

), mean square
Xt+1—Xt

., turn angles a; = tan‘l(
Xt+2~Xt+1

displacement MSD(t) = % N Ir (&) — r;(0)]?, velocity autocorrelations C,(7) = {|v,|(t + 7) -
v(t)), effective dispersion coefficients D¢(t) = W—lq)fOWDe(t,y’)dy’, and bivariate angle-speed

probability density contours. Here x; and y; are individual bacteria positions at time t, N is the
total number of tracked cells, 7; is the displacement for bacterium i, and |v,| is the magnitude of
the net velocity (i.e., speed) of the bacteria. The scripts used to calculate all statistics can be found
in Supplementary Methods 2. Note that the net speeds are the speed of the bacteria determined
through particle tracking. Since bacteria are displaced through the porous media both due to their
own motility and the advection imparted by the background flow, the net speed obtained via

particle tracking measures the combined effect of these two drivers.

2.3.2 Micromodel Construction

Micromodels for three porous geometries were constructed from PDMS using staggered arrays of
grains to represent porous media (see Fig. 1). The three geometries used in this experiment were
(1) arrays with a grain diameter (GD) of 80 um and a pore throat length (PL) - minimum space
between grains - of 20 um (¢p = 0.42), (2) arrays with a GD of 40 pm and a PL of 20 um (¢ = 0.6),
and (3) arrays with a GD of 40 um and a PL of 10 um (¢ = 0.42). The micromodel dimensions
were 2 mm in the transverse direction, 17 mm in the longitudinal direction (for the porous
section), and 20 um in the vertical direction. We chose a depth of 20 um as we found that a larger
depth causes bacteria to move in and out of the focal plane of our camera too often, and

constraining the depth further would have caused excessive shear along the vertical plane.
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2.3.3 Bacteria Culture

Bacterial strains Acidovorax JHL-9 and Paenibacillus 300A were grown in liquid culture aerobically
at 30 °C on dextrose-free Trypticase Soy Broth (TSB). At late-log to stationary phase, cultures were
diluted to an optical density at 600 nm (OD600) of ~ 0.1 — 0.15 and injected into the micromodel
devices described above. Geobacter sulfurreducens was grown anaerobically (80:20 N;:CO>), in
glass serum bottles or headspace vials, crimp-sealed with butyl-rubbers stoppers, on Freshwater
Medium [43] with 50 mM sodium fumarate as electron acceptor in place of ferric citrate [44].
Stationary-phase G. sulfurreducens cells were injected, without dilution, into micromodel devices
that had been de-oxygenated overnight in an H,-free anoxic chamber (MBraun, O, < 10 ppm, 100%
N.). De-oxygenated micromodels were then removed from the anoxic chamber using an anaerobic
jar and were kept in the anaerobic jar until immediately before use. G. sulfurreducens cells were
removed from the serum bottle or headspace vial with a degassed (80:20 N,:CO;) 1-cc syringe and
22-gauge needle and immediately injected into the degassed micromodel. Though our video
acquisition was generally restricted to about an hour after the injection of bacteria, it should be
noted that G. sulfurreducens are also known to tolerate and grow with oxygen as a terminal

electron acceptor for up to 24 hours [45].

2.3.4 Video Acquisition

All videos were collected with a confocal imaging technique on a Nikon Eclipse Ti2-U inverted
microscope equipped (viewing vertically downwards and recording motion in the x-y plane) with
a digital CMOS camera Hamamatsu Orca-Flash 4.0 controlled by NIS Elements imaging software.
The sensor pixel size was 6.5 um x 6.5 um, and each recorded frame had a size of 2048 pixels x
2048 pixels. For videos at 10x magnification, the recorded domain size was 2048 x 6.5/10 = 1331.2

pum x 1331.2 um, and for videos at 20x magnification the video domain was 665.6 pm x 665.6 um.
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Videos were recorded for 5 minutes at frame rates of about 10 frames per second (the interval
time between frames varied slightly resulting in rates of 8-12 frames per second). The exact time

interval between frames were recorded to allow for accurate computation of transport metrics.

2.3.5 Image Preprocessing

The raw videos were preprocessed with background subtraction using a lag method specifically
developed in-house for these experiments. To capture trajectories of bacteria that may have not
moved between two successive frames, the subtracted background must be more than a few
frames back in time. Standard practice in background subtraction for such cases is to use the initial
frame, or the mean frame, as a background for the rest of the video, but this was not possible in
our case due to variability in image brightness throughout the duration of the video. To get around
these problems, we used the 5" previous frame to perform background subtraction. In other
words, to subtract the background of frame 6, we calculated frame 6 minus frame 1. Thus, any

bacteria that moved a little over the course of 5 frames could still be identified in particle tracking.

2.3.6 Particle Tracking

After background subtraction, the foreground was then loaded into Imagel and particle tracking
was performed with the plugin TrackMate. For feature detection the Laplacian of Gaussian (LoG)
detector was used, and to link the features, we used the Linear Assignment Problem (LAP) tracker.

A sample output of trajectories from TrackMate is given in the Supplementary Data.

2.3.7 Flow Field Simulations

Simulations of the flow field were conducted to understand which parts of the geometry bacteria
are likely to oversample or undersample. The experimental geometry was initially digitized in

Blender then refined in OpenFOAM to produce a regular grid consisting of 2400 x 2400 x 72 voxels
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with a resolution of Ax = Ay = 0.2773 pm, Az = 0.2778 pm. The flow fields of the digitized
geometries were obtained by solving the flow of incompressible Newtonian fluid governed by the
Navier-Stokes equations using SimpleFoam. The steady-state solver belongs to the OpenFOAM
package that uses semi-implicit methods for pressure linked equations algorithms. Constant flow
rate at specific experimental values of 1 and 5 uL/h (Q =2.78 x 107 3m3s 1 orQ =

1.39 X 10™2m3s™1) and constant pressure P = 0 kg m™*s~2

were imposed at the inlet and
outlet of the domain, respectively. No-slip conditions were assigned to the fluid-solid interface.
We used a kinematic viscosity v of 1.14x10® m?/s for the fluid (TSB), given a calculated ratio of

JTSB £ 1.14 [46]. A sample case folder for the simulations, as well as the commands used to run

Vwater

it on a local machine, can be found in Supplementary Methods 1.

2.4 Results

2.4.1 Advection-Dominated Transport Dynamics
We use the term “advection-dominated transport” to highlight a regime wherein the variable
shear forces within pore spaces, and dominance of flow speeds over motility speeds, restrict the
ability of bacteria to move across streamlines, thus guiding their motion primarily along
streamlines at differential velocities. Advection-dominated transport would occur in scenarios of
high Peclet number [47] and persists in situations where weak coupling between motility and
biofilm formation patterns are observed [48]. This type of transport, guided by shear induced cell
rotation causing decreased transverse dispersion and increased lateral dispersion, has also been
previously reported for bacteria in porous media flows [49]. Here, we provide additional relevant
statistical information to characterize advection-dominated transport for three different species

of motile bacteria relevant to bioremediation applications. In the following, we characterize

82



transport dynamics through the (MSD), turn angle distribution, C,(t), and D€(t). We use these
statistics to develop a robust understanding of transport driven by differential advection,
movement across streamlines, velocity decorrelation, and spreading [50, 51].

2.4.1.1 Turn Angle Analysis Reveals Impact of Flow Rate on Motility

To understand the motility of each species of bacteria, we primarily use their turn angle
distributions. Note that turn angles as defined in this chapter are not the same as traditionally
reported turn angles that reflect the body orientation during bacterial run and tumbles [52].
Because the bacterial speeds are not significantly greater than the background flow speeds, and
because our experiments were performed at a relatively low frame rate, we use the term “turn
angle” to capture the relative change in the trajectory of advected cells between successive video
frames.

For no-flow conditions, Paenibacillus (peritrichous flagella-based motility) show a high
probability of low or very high turn angles (Fig 2a). Low turn angles (¢ > —30° or a < 30°) would
represent persistent forward motion (i.e., long run times), and high angle turns would represent
reversals in direction (i.e., tumbling). Although not a necessary condition, a high probability of low
turn angles implies a high probability of runs, and a high probability of medium to high turn angles
implies a high probability of tumbling. Geobacter and Acidovorax (pili or monotrichous flagella-
based motility) have a relatively low probability of both low and high turn angles because their
motion is generally more random and is subject to slight changes in hydrodynamics.

To identify the differences in motility for each species more effectively, we also report the
ratio of the turn angle PDF for each species to the turn angle PDF for Geobacter (Figs. 2d-2f).
Essentially, Geobacter represents our twitching baseline, as their speed distributions

(Supplementary Figure 1) and mean speed (about 2.3 um/s after subtracting average drift) are
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generally in agreement with previously reported twitching speeds of various bacteria [32, 35-37].
Thus, the PDFs of Acidovorax and Paenibacillus turn angles show departure of their motion
behavior from a typical twitcher. When flow is absent (Fig. 2d), the PDF ratio for Paenibacillus
shows exactly what we expect from a swimmer — high probability of low turn angles (persistent
forward motion), low probability of medium turn angles (random motion), and high probability of
high turn angles (direction reversal). Intriguingly, the genome of Acidovorax JHL-9 (see data
availability) contains numerous genes related to twitching motility but not a complement of genes
related to flagella-mediated motility. However, as previously discussed, wet mount TEM images of
strain JHL-9 (Supplementary Figure 2) suggest the presence of polar flagella. Furthermore, the
speed (Supplementary Figure 1) and turn angle ratio (Fig. 2d) distributions at no-flow indicate that
Acidovorax behaves differently than Geobacter and closer to Paenibacillus, thus revealing distinct
motility traits to the three species selected in this study.

Compared to the case of our no-flow experiments, the interpretation of our turn angle
distributions in the presence of flow is slightly more complicated. We posit that in a viscous steady-
state flow, non-motile bacteria would behave as inert particles transported by advection only, thus
moving along streamlines of the pore-scale flow field, which would result in small turn angles
between successive steps of the trajectories. In other words, in presence of a background flow,
persistent forward motion means a high probability of low turn angle distributions. However,
motile bacteria also move across streamlines, move in reverse direction, and explore the pore
space under flow conditions, and as a result, large turn angles should be expected for highly active

self-propelled bacteria [25, 53-55].
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Figure 2. Turn angle PDFs for all three species in the low porosity geometry (grain diameter = 80 um, pore
length = 20 um). (a) Turn angle PDF at flow rate of 0 pL/h. (b) Turn angle PDF at flow rate of 1 uL/h. (c) Turn
angle PDF at a flow rate of 5 uL/h . (d) Turn angle PDF ratio at a flow rate of 0 pL/h. (e) Turn angle PDF ratio
at a flow rate of 1 pL/h. (f) Turn angle PDF ratio at a flow rate of 5 uL/h. Turn angle PDF ratios are calculated
as the PDF/PDFG, where PDFG represents the PDF of Geobacter. We choose to make the ratios relative to
Geobacter as they move much less than the other bacteria. Convergence of the shape of the turn angle
distribution and clustering of turn angles around 0° at 5 pL/h indicates strong advection-dominated
transport.

We find that Paenibacillus have a higher probability of large turns (& < —90° or @ > 90°)
than the other two species at a flow rate of 1 pL/h, while at 5 pL/h this difference is even more
noticeable (Figs. 2b and 2c). Examining the turn angle PDF ratios (Fig. 2e), we see that at 1ul/h
Paenibacillus and Acidovorax have similar distributions for low to medium turn angles, but
Paenibacillus has a much higher probability of large turn angles, indicating a greater potential for
direction reversal than the other bacteria. At 5 uL/h (Fig. 2f) the similarities between Paenibacillus
and Acidovorax completely disappear, and the turn angle PDFs for Acidovorax and Geobacter

essentially converge. This implies that at high flow speeds, Paenibacillus, with its peritrichous
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flagella, are either able to tumble more, or run faster, than Acidovorax or Geobacter. Furthermore,
these results suggest that Acidovorax, with its monotrichous flagella, experience a greater impact
on its motility due to flow speed than Paenibacillus do. While more experiments with a greater
variety of monotrichous and peritrichous species are needed to confirm this trend, our initial
results imply that peritrichous flagella enable motility at higher flow speeds than monotrichous
flagella. Since the no-flow speed PDFs show that Acidovorax and Paenibacillus have similar max
speeds, and monotrichous and amphitrichous bacteria have generally been shown to be capable
of higher speeds than peritrichous bacteria [36, 58], it does not seem likely that the difference in
motility between Acidovorax and Paenibacillus at high speed is due to run speeds. Thus, our
results also imply that at high flow rates Acidovorax are unable to tumble, but Paenibacillus can.
This is supported by research showing that increasing numbers of flagella increases the probability
of tumbling [59]. However, we should also note that differences in the flagellar architecture are
not the only possible explanations for differences in the turn angle distributions. Two other
possible explanations for this include reorientation strategies, which may impact their preference
to run or tumble [60], and size-related dynamics, which have been shown to influence
hydrodynamic impacts on bacterial motility [61]. Regardless of the exact cause, our results do
show that Paenibacillus can maintain swimming-like behavior at higher flow rates. Acidovorax, on
the other hand, act like swimmers at low or no flow, and twitchers at high flow. In other words,
advection-dominated transport, which causes trajectories of swimmers to appear similar as
trajectories of twitchers, occurs at a lower flow rate for Acidovorax than for Paenibacillus.

2.4.1.2 Effect on Bacterial Spreading at Different Porosities and Flow Rates

Figure 3 confirms additional evidence of advection-dominated transport via the computed MSD.

Here, we introduce the term “differential advection” to describe the MSD results, stemming from
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the bacteria's mixed super-diffusive motions influenced by streamline shifts, trapping, and pore
space exploration. This term aptly captures the relationship between velocity decorrelation events
and bacterial advection and offers a nuanced understanding of the transport dynamics. As the
flow rate increases, bacteria will, on average, have a larger range of displacements due to the
magnitudes of velocities it can sample within the laminar profile of porous media flow [17].
Furthermore, smaller turn angles at higher flow rates (as described in the previous section) implies
less streamline changing. This results in higher values of the MSD driven by increased differential
advection as bacteria are transported by a range of velocities produced by converging and
diverging streamlines within the pore network. These observations are further used for later
comparisons in the context of Fig. 6, and generally align with enhanced dispersion reported due
to transport of bacteria along faster flow paths than the local flow [17, 25].

Complementing the increased differential advection, as the flow rate increases, the MSDs
of all species of bacteria in the low porosity geometry show signs of convergence (both in slope
and magnitude as seen in Fig. 3e), likely driven by decorrelation of cell swimming as bacteria
navigates pore structures [56]. Essentially, advection-dominated transport is thus revealed by the
convergence (between different species of bacteria) of both turn angle distributions and MSD, and
a shift toward greater differential advection. In contrast, with the high porosity geometry, we
observe less evidence of MSD convergence, which indicates that the flow speeds are not high
enough to suppress bacterial motility, leading to a reduction in differential advection as shown by
lower MSD values (Figs. 3b and 3c). We also find that for a fixed porosity and flow rate, Geobacter
and Acidovorax always advect more than Paenibacillus, further supporting the idea that
peritrichous swimmers are differentially advected to a lesser degree than twitchers or polar

swimmers.
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Figure 3. Mean square displacements (MSDs) at different porosities and flow rates for three different species
of bacteria. (a) MSDs from relevant experiments (3 species at lower porosities and 1 at higher porosity, 2
flow rates). The 1 pL/h results are shown as solid lines and the 5 pL/h results are shown as dotted lines. (b)
MSDs for Acidovorax for ¢ = 0.60 and ¢ = 0.42 at a flow rate of 1 pL/h (mean fluid speed of 11.6 um/s
and 16.5 um/s respectively). (c) MSDs for Acidovorax for ¢ = 0.60 and ¢p = 0.42 at a flow rate of 5 pL/h
(mean fluid speeds of 57.9 um/s and 82.7 um/s respectively). (d) MSDs for all species for ¢ = 0.42 at a flow
rate of 1 pL/h. (e) MSDs for all species for ¢p = 0.42 at a flow rate of 5 pL/h. These figures show an increase
in the impact of differential advection for motile bacteria as the flow rate increases. The rapid increase in
MSD driven by differential advection, along with convergence of the MSDs in the low porosity geometry at
5 uL/h, provide evidence of advection-dominated transport. At both flow speeds, Paenibacillus show lower
values of MSD than Geobacter or Acidovorax, indicating a stronger resistance to advection-dominated
transport. All low porosity results in this figure are from the grain diameter = 80 um, pore length = 20 um

geometry.

To further understand spreading in our experiments, we calculated the effective
dispersion coefficient, D¢, based on the average spatial variance of the bacteria distribution
evolving from a point-like injection, that is, the transport of Green function as defined in [62, 63].
At 1 uL/h, D€ is impacted by spreading in both the longitudinal and transverse directions for
Paenibacillus and Acidovorax, but primarily in the longitudinal direction for Geobacter owing to
its considerably lower twitching speed than the mean fluid speed. At 5 pL/h, D€ primarily
represents longitudinal dispersion for all species. Our results show that when the flow rate

increases from 1 pL/h to 5 ulL/h, D€ increases the most for Geobacter, and the least for
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Paenibacillus (Table 1). Because Paenibacillus are able to maintain some form of motility at 5 uL/h,
and as a result are still able to change streamlines and explore the pore space, differential
advection has less of an impact on their dispersion than it does for the dispersion of Geobacter
and Acidovorax. In other words, the bacteria that follow streamlines or explore less space in the
transverse direction to the flow, advect and spread more in the direction of flow. These results
complement those presented in [17, 25, 49], which showed that hydrodynamic gradients in porous
geometries reduce transverse dispersion. We further this research by showing that bacterial
transport is advective-dominated for a wide variety of flow rates depending on the type of

bacterial motility.

Table 1. Effective Bacterial Dispersion Coefficients D¢ (um;) for all experiments conducted in the low
porosity geometry (¢ = 0.42). As flow rate increases, Geobacter have the greatest increase in dispersion
and Paenibacillus have the smallest increase in dispersion. As the motility speeds of the bacteria are less
than the fluid speed at 5 pL/h, dispersion is almost entirely in the direction of flow for the 5 uL/h
experiments.

De
m2
(h—7)
1mL/h | 107 + 46 308+97 | 204 +56

Paenibacillus | Geobacter | Acidovorax

5mbL/h | 217+43 | 895+ 148 | 466+ 74

2.4.1.3 Velocity Autocorrelation to Examine Emergence of Advection-Dominated Transport

We use the velocity autocorrelation function (C,,) to further provide information on advection-
dominated transport [64]. Generally, in porous media, bacteria show decorrelation in velocities
over time due to a tendency for sampling different portions of the flow field and trapping events
(i.e., pore confinement, occurrence of collisions and attachment to obstacles) [8, 63]. Previous

research has shown that decorrelation of bacterial trajectories is more rapid at high flow rates
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[49]. Our findings both confirm these trends and present new information on how motility type
impacts decorrelation. We show that Paenibacillus and Acidovorax exhibit decorrelation faster
than Geobacter at 1 uL/h (Fig. 4a), but that at 5 pL/h, all decorrelation times are essentially the
same. This suggests that at low flow rates swimmers experience larger variations in velocity over
time by sampling multiple streamlines and trapping events that decorrelate subsequent velocities.
However, as flow rate increases, motility type no longer has significant impact on decorrelation
events. These observations further support the presence of flagella-based swimming for
Acidovorax at 1 uL/h. Convergence of C, decorrelation times at high flow rate points to the
emergence of advection-dominated transport. These trends generally agree with the observations
of the MSD, D€ and turn angle distribution analysis, although C,, is slightly less sensitive to

differences in motility than the other metrics.
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Figure 4. Velocity Autocorrelation functions (C,) for the low porosity experiments at (a) 1 pL/h and (b) 5
puL/h. At 1 uL/h, the swimming species (Paenibacillus and Acidovorax) show faster decorrelation time
(approximately 6.7 seconds) than the 10.8 second decorrelation time of the twitching species (Geobacter).
At 5 pL/h the C,, for the plots of all species converges producing a decorrelation time of approximately 0.8
seconds, which is further evidence of advection-dominated transport.
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2.4.2 Spatial Variations in Net Speeds

We digitized the experimental microfluidic geometries and simulated the steady-state viscous flow
at high resolution using SimpleFoam [65, 66] to determine how bacteria may under or oversample
different parts of a flow field (Fig. 5). By comparing the obtained simulated distribution of fluid
speeds against the experimentally derived distribution of net bacterial speeds, we can develop an
understanding of the zones within a pore network that bacteria may preferentially occupy. We
recognize that a more accurate comparison would use flux weighting and particle tracking to
compare the simulated fluid speed PDFs with the net bacterial speed PDFs. However, given the
large number of trajectories (tens of thousands for each bacteria), and the periodic nature of our
flow field, we posit that the trajectories of tracked bacteria adequately sample the domain space
and thus provide basis for comparison to simulated speeds.

We observe that regardless of flow rate, motility type, or porosity, motile bacteria in
porous media tend to undersample low-speed zones and oversample medium-speed zones
(relative to the Eulerian fluid speed PDF) (Fig. 6). This provides additional insight challenging the
notion of shear trapping which suggests bacteria in a shear flow will oversample low-speed zones
[67, 68]. A plausible explanation for this observed difference lies in recognizing that studies
reporting shear trapping were often conducted in simpler geometries (e.g., straight channels) [14]
than in porous media geometries producing converging and diverging streamlines, although it has
been reported that shear may lead to creation of hotspot of colonization instead of trapping close
to walls of curved surfaces [18]. . An exact relationship between hydrodynamics and the observed

speed sampling cannot be deduced in our study because of lack of high-resolution tracking
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Figure 5. Results from the steady-state viscous flow simulations of our experimental microfluidic
geometries. All low porosity results in this figure are from the grain diameter = 80 um, pore length = 20 um
geometry. (a) Probability distribution functions (PDFs) of fluid speed from the simulated flow fields for each
porosity and flow rate used in our experiments. (b) Zoomed-in velocity magnitude field for the low porosity
simulation at 1 pL/h. (c) Zoomed-in velocity magnitude field for the high porosity simulation at 1 pL/h. (d)
Zoomed-in shear stress magnitude field for the low porosity simulation at 1 pL/h. (e) Zoomed-in shear stress
magnitude field for the high porosity simulation at 1 uL/h.

necessary to compute shear-induced lateral transport towards the walls due to Jeffrey orbits [69-
71] and potential backward swimming in the leeward side of the grains, which has been reported
has another form of shear trapping in more complex geometries [18].

In no-flow conditions (Supplementary Fig 1), after subtracting drift speeds, Geobacter has
a mean speed of 2.3 um/s, Acidovorax has a mean speed of 5.9 um/s, and Paenibacillus has a
mean speed of 7.2 um/s. The 95" percentile speed for the three species are 4.5 um/s, 17.9 um/s,
and 20.6 um/s for Geobacter, Acidovorax, and Paenibacillus respectively. At the low flow rate of 1
mL/h (16.5 um/s average flow speed at low porosity), the swimming speeds of Acidovorax and

Paenibacillus can thus exceed the fluid flow speeds (although just barely in the case of
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Acidovorax), but at 5 mL/h, none of the bacteria in our study can consistently exceed the fluid flow

speed. Thus, advection-dominated transport in its simplest form is a result of flow speeds
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Figure 6. PDFs of speeds plotted to show the net speeds of the bacteria overlayed by the simulated speeds

for the respective flow rate and porosity. The net speeds are represented by scatter points, whereas the

simulated speeds are represented by solid lines. All low porosity results in this figure are from the grain

diameter = 80 um, pore length = 20 um geometry. All simulated PDFs represent the distribution of Eulerian

flow speeds for that geometry. (a) Net and simulated speed distributions for Acidovorax for ¢ = 0.60 and
¢ = 0.42 at a flow rate of 1 pL/h. (b) Net and simulated speed distributions for Acidovorax for ¢ = 0.60
and ¢ = 0.42 and flow rate of 5 pL/h. (c) Net and simulated speeds for all species for ¢p = 0.42 at a flow
rate of 1 pL/h. (d) Net and simulated speeds for all species for ¢p = 0.42 at a flow rate of 5 pL/h. These
figures show the tendency for motile bacteria to oversample medium-speed zones within a porous media.

93



exceeding motility speeds. However, shear adds another layer of complexity when considering the
ability for bacteria to bundle/unbundle their flagella. Recent work has shown that at a shear
magnitude of about 0.26 Pa, E. Coli lose control over this mechanism and can’t effectively swim
[72]. The 1 uL/h simulations in our study do not produce shear exceeding this value (Figs. 5d and
5e), but at 5 pL/h, the value of shear close to the grain is larger than this threshold value. Although
an investigation of threshold shear magnitudes for bundling abilities in Paenibacillus and
Acidovorax was beyond the scope of this chapter, the inability to control motility [73] through
bundling/unbundling of flagella remains a likely explanation for the differences observed in the
transport of Paenibacillus and Acidovorax. It should be noted that in our quasi-2D porous media,
under uniform and laminar flow, there are no chemotactic or thermal gradients influencing the
transport. Thus, the magnitude and distribution of shear within a porous media, which attains its
maximum value at grain surfaces and is minimum along centerlines of a pore channel, is likely the

primary physical mechanism that controls bacterial transport.

2.4.3 Combined Effect of Turn Angle and Net Speed on Spreading
We further analyze the combined influence of net speed and turn angle on the advective
spreading of motile bacteria using a matrix of bivariate (speed-angle) joint probability density
contours (Fig. 7). The probability density matrix allows us to observe general relationships
between the differential advection driven spreading plotted in Fig. 3a, and the turn angles and net
speeds of the bacteria. As net speed increases, bacteria have a narrower range of turn angles and,
therefore, greater spreading in the longitudinal direction stems from strongly advective particle

motion. In the top and middle rows of Fig. 7, larger turn angles and less spreading are seen from
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left to right. In the bottom row, there is no significant change in large-angle turns or advective
spreading. Thus, somewhere between the middle and bottom rows, or around a median speed of
50-100 mm/s, the impacts of advection-dominated transport increase to the extent that changes
in fluid speed causes insignificant difference in advective spreading or turn angle for bacteria of
the same motility type. This suppression in active dispersion in the case of strong fluid flow
corroborates recent studies of transport of actively moving particles in porous media [74]. In
addition to providing deeper insight into the transition to the advection-dominated regime, the
joint probability density matrix also shows that bacteria are more likely to make large turns at low
speeds than at high speeds. Conversely, small-angle turns are more likely to occur at high speeds
than large-angle turns. When bacteria are moving with faster streamlines, their turn angles are
smaller as they are more likely to go with the flow. When moving with slower streamlines, bacteria
are more likely and more able to make large turns and cross transversely to other streamlines. This
provides further evidence that pore space exploration and movement across streamlines require

low fluid speeds and results in large turn angles.

2.5. Discussion
This study focuses on investigating the impact of flow rates and porosity on the transport of
different species of motile bacteria in porous media. We show that Geobacter, with their purely
twitching-based motility, understandably need surfaces to propel themselves forward and are
unable to swim in suspended media, and as a result are not fast enough in a porous media domain
to show any impacts of motility on their transport at low or high flow rates. Paenibacillus, with

their peritrichous flagella, exhibit strong swimming motility. Although they exhibit weak motion
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Figure 7. Velocity-angle joint probability density matrix. (a) Acidovorax, ¢ = 0.42, 1 uL/h (grain diameter =
80 mm, pore length = 20 um) (b) Paenibacillus, ¢ = 0.42, 1 pL/h (c) Acidovorax, ¢ = 0.60, 1 uL/h (d)
Paenibacillus, ¢ = 0.42, 5 pL/h | Geobacter, ¢ = 0.42, 1 pL/h (f) Acidovorax, ¢ = 0.60, 5 pL/h (g)
Geobacter, ¢ = 0.42, 5 pL/h (h) Acidovorax, ¢ = 0.42, 5 uL/h (grain diameter = 80 mm, pore length = 20
mm) (i) Acidovorax, ¢ = 0.42, 5 pL/h (grain diameter = 40 um, pore length = 10 um). Each figure in the
density matrix shows probability density contours for net speed and turn angle for a particular set of
conditions. As we move across the matrix from bottom to top, we see decreased net speeds, increased
large-angle turns, and less spreading. As we move from left to right across the matrix, we see a slight
increase in large-angle turns and decrease in spreading, but not as much as going from bottom to top. There
is no significant change in net speed moving from left to right. This figure implies that fast net speeds are
required for bacteria to be in the advection-dominated regime, which results in more small-angle turns.
Furthermore, past a threshold speed of about 50-100 pum/s, motile bacteria are unlikely to have large-angle
turns.
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across streamlines and exploration of pore space at high flow rates, their turn angle distributions
reflect a higher degree of activity. In the middle of the twitchers and swimmers are Acidovorax.
Their transport metric are closer to swimmers at no-flow and at a flow rate of 1 puL/h, but at 5
uL/h, their transport metrics tend to appear closer to twitchers. Although a deep investigation of
the motility type of Acidovorax is beyond the scope of this work, we show that differences in
flagellar architecture offer a reasonable explanation for their behavior. Our results and previous
imaging of Acidovorax suggest that they have a single polar flagellum as opposed to the
peritrichous flagella of Paenibacillus. At high flow rates, it appears that peritrichous flagella are
more able to facilitate tumbling behavior, and thus, movement across streamlines.

In the advection-dominated transport regime, lack of pore space exploration and
streamline changing results in less transverse movement and thus leads to an overall increase in
transported distance and spread in the direction of flow. We show that advection-dominated
transport is revealed through convergence of turn angle distributions, MSDs, species independent
velocity decorrelation times, and a clustering of turn angles around 0°. This study also provides
contrasting results to the notion of shear trapping wherein motile bacteria are expected to
oversample low-velocity regions in a shear flow. In the case of our complex porous geometry, we
observe bacteria oversampling medium-speed regions. When the geometry of pore channels
allows for convergence and divergence of streamlines in 2D space, producing hydrodynamic
patterns typically found in realistic porous media, wide-ranging values of shear forces emerge,
leading to an interesting interplay between shear, motility, and the overall bacterial transport.
Oversampling of medium-speed zones could be because of high levels of shear (closer to the walls)
preventing bacteria from bundling their flagella [72]. In this unbundled state, the bacteria act as

deformable objects resulting in a stokes lift force as they approach surfaces. In addition, size
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exclusion and hydrodynamic chromatography have shown that the transport of microbes is
dependent on size and shape [75, 76]. Size exclusion occurs because bacteria are too large to only
occupy the slow speed zones around the grain [77]. Unless they are attached, bacteria will move
more quickly around the grain than a solute will because part of their body is in higher speed
zones. Finally, electrostatic repulsion, or the likely presence of energy barriers close to the grains,
may prevent bacteria from getting too close to surfaces [18, 55, 78-81]. The wide variety of
plausible explanations for absence of shear trapping in our study, or shear trapping being
manifested at through bacterial reorientation in the leeward side of the grains, illustrate the
complexities of analyzing bacterial transport in porous media. The oversampling of medium
speeds can thus be a result of several different hydrodynamic or biophysical properties, and we
identify shear as a likely physical phenomenon underpinning our observed transport patterns.
Our work complements previous studies that have shown advection to dominate the
transport of bacteria at high flow rates [17, 25], effectively erasing the differences in motile
behavior between different species of bacteria [14, 18, 67, 78, 82]. Our work also builds upon the
body of evidence showing that there are significant transport differences between swimmers and
twitchers [83, 84], and that bacteria with straighter paths (non-motile) spread more (in the
direction of flow) than bacteria with exploratory paths (motile) at low flow speeds [17, 25]. We
expect the results presented here to help future researchers in developing more robust
experiments and models for not only bioremediation, but other applications where species-aware
transport dynamics at small-scale can support and inform development of improved upscaled
models. As evidenced by plots of various transport metrics which tend to move towards
convergence at high flow rates, it can be argued at sufficiently high flow rates in porous media,

different bacterial species will all exhibit uniform transport characteristics not too dissimilar than
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those expected from passive tracers. The usefulness of the presented research is in recognizing
that such high flow rates are rarely encountered in porous media applications, and the progression
of bacterial species towards a uniform transport behavior depends on the flow rates, porosities,
and the motility types.

Although it was beyond the scope of this work to rigorously investigate how our results
may be applied to general micro-scale and pore-scale modeling of microbial motility, we offer a
quick example here of how they may be simply applied to Darcy-scale bacterial transport. As

discussed in section 1.1.1.2.3 of the dissertation, The 1D ADE for microbial transport in a

. L ac
saturated, homogeneous porous medium can be formulated in simple terms as [46] RE+

pp0S _ [o*C

-2 = Doz v(;—i, where S is the attached microbe concentration, D is the hydrodynamic
dispersion coefficient, v is microbial velocity, R is the retardation factor, p,, is the bulk density, and
€ is the bed porosity. Given this equation, a simple way to incorporate our results would to have
D be a function of v (pore water velocity) and motility type. Very roughly, our results imply that
D doubles when v increases by a factor of five, and D is 2x greater for bacteria with twitching
motility than for those with monotrichous flagella, and the D for bacteria with monotrichous
flagella is 2x greater than for those with peritrichous flagella. However, given our lack of variety in
species, our use of only two flow rates, and our incomplete understanding of the motility type of
Acidovorax, more robust studies are needed to confirm the present trends before significant
alterations to transport equations are warranted. Furthermore, a more rigorous mathematical
understanding of the upscaling of these bacterial dispersion coefficients from micro-scale to
Darcy-scale is needed to effectively use them in bioremediation and other field-scale efforts.

While we have tried to provide a robust analysis of bacterial transport in idealized porous

media under different flow rates, we also recognize that our study contains many limitations. The
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bacteria were difficult to image and required large exposure times, which resulted in low frame
rates and significant light scattering around the grains, thus impacting the accuracy of particle
tracking. The low frame rates were particularly challenging for situations with high-speed particles
(such as Geobacter at 5 pL/h), which highlights the need for tracking methods that can more
accurately extract motion statistics from high speed particles. Furthermore, the low frame rate
prevented us from analyzing bacteria through traditional run and tumble statistics. We also
recognize that a more expansive set of experiments would have included a wider variety of flow
rates (especially lower flow rates so that motility driven diffusion is more dominant than flow
driven advection), which would allow for more confidence in any trends observed. Also, although
we have mainly attributed the differences in transport of our three species to their differences in
motility, there are other phenomena, such as the impact of hydrodynamics on different cell
lengths (i.e., size exclusion), and DLVO and steric interactions [7], which could offer supporting
explanations. Finally, we recognize that a more complete study of the impacts of flow rate on the
transport of different bacteria would examine the impact of shear on the ability for monotrichous
and peritrichous flagella to bundle/unbundle. These limitations show that there is still significant

work to be done to develop a mature theory of bacterial transport in porous media flows.

Data Availability

Besides the raw video and trajectory data, we have provided most of the other data and scripts
required to replicate our findings in the supplementary materials. Raw video and trajectory data
are available from the corresponding author upon reasonable request. The genome for Acidovorax

JHL-9 can be found at: https://genome.jgi.doe.gov/portal/AcispJHL9 FD/AcispJHL9 FD.info.html.
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Chapter 3: Evaluation of particle tracking codes for dispersing particles in
porous media

3.1 Abstract
Particle tracking (PT) is a popular technique in microscopy, microfluidics and colloidal transport
studies, where image analysis is used to reconstruct trajectories from bright spots in a video. The
performance of many PT algorithms has been rigorously tested for directed and Brownian motion
in open media. However, PT is frequently used to track particles in porous media where complex
geometries and viscous flows generate particles with high velocity variability over time. Here, we
present an evaluation of four PT algorithms for a simulated dispersion of particles in porous media
across a range of particle speeds and densities. Of special note, we introduce a new velocity-based
PT linking algorithm (V-TrackMat) that achieves high accuracy relative to the other PT algorithms.
Our findings underscore that traditional statistics, which revolve around detection and linking
proficiency, fall short in providing a holistic comparison of PT codes because they tend to
underpenalize aggressive linking techniques. We further elucidate that all codes analyzed show a
decrease in performance due to high speeds, particle densities, and trajectory noise. However,
linking algorithms designed to harness velocity data show superior performance, especially in the
case of high-speed advective motion. Lastly, we emphasize how PT error can influence transport

analysis.

3.2 Introduction
Particle Tracking (PT) employs detection and linking algorithms to reconstruct the
trajectories of objects within time-lapse image data. PT has vast applicability, spanning across any

video data with moving entities, and it is one of the principal methods used to decipher microscale
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transport processes. This includes phenomena such as particle diffusion [1-3], nano and micro
particle transport in saturated [4, 5] or multiphases flow [6], bacterial dispersion [7-17] ,
chemotaxis [18], biofilm formation [19, 20], viral transport [12], transport in porous media [8-11,
21], colloid filtration [22], and computation of DLVO interactions through accurate trajectory
analysis and measurements of hindered diffusion [23, 24]. For a granular understanding of these
processes, the precision and speed of PT are paramount.

The PT landscape boasts a plethora of open source and proprietary codes [25]. This
multitude underscores the pressing need for robust comparative analyses between codes.
Notably, the seminal comparative study in this domain centered on particles exhibiting Brownian
and directed motion within open media [26]. However, a void persists in the exploration of PT
methods tailored for particles navigating porous media flows. In these flows, spatial confinement
(i.e. obstacles or grains) and dispersion result in complex flow paths, leading to pronounced
variability in velocity fields over small temporal and spatial scales [27]. We should note here that
particle tracking, in the context used throughout this chapter, refers to time lapse image
acquisition and subsequent particle identity assignment between consecutive frames [28].

The common strategy to reconstruct single particle trajectories by time lapse image
acquisition first requires the particle detection in a single image at each frame and, then, the
particle identity assignment (also termed as pairing or linking assignment) between particles
detected in two consequent frames. Thus, key challenges in PT revolve around detection,
localization, and linking errors [26, 29]. Detection errors often stem from overlapping particles,
particles out of focus, particles indistinguishable from the background, or varied particle sizes [30,
31]. Linking errors can similarly be attributed to a confluence of factors: high particle speeds and

densities, algorithmic inaccuracies, and preexisting detection errors [32]. Localization error
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predominantly emerges from the detection algorithm and the signal-to-noise ratio of the imagery
[26]. Linking errors generally represent the most significant source of error, although large errors
can occur for images where detection is especially difficult. Localization errors, which are often
sub-pixel, minimally influence PT performance for a large group of particles.

Here, we compare the performance of four PT linking algorithms for a simulated
dispersing of particles in porous media. To understand the impacts across a range of particle speed
distributions, we simulated tracer particle dispersion in two different porous geometries (further

discussed in Methods section). A critical facet of particle tracking is the particle spacing
displacement ratio [33], PSDR = % , Where ipd is the average inter-particle distance detected
within each frame (averaged over all frames), U is the average particle speed, and At is the time
interval between two consequent frames that corresponds to the inverse of the frame rate. Hence,
PSDR is a measure of the mean particle spacing relative to the average jump length of particles
between frames. This statistic can be considered a general constraint on the strength of PT
algorithms, as it is directly related to the number of probable links each particle can make with
other particles. For PSDR << 1, PT has been shown to be extremely challenging [34], and high
particle densities have been show to increase the sensitivity of PT parameters [35]. In fact, one of
the primary motivations of this chapter is to develop a rigorous understanding of particle tracking
in these challenging scenarios, given that we observed jumps of up to 120 pixels per frame in our
videos of Geobacter. As particles get very close together or have large displacements between
frames, PT algorithms are not able to confidently determine accurate links to respective
trajectories between frames. Thus, our analysis covers multiple mean speeds, particle densities,

and speed distribution shapes to gauge PT codes across varied PSDRs (Table 1). Our approach not

only evaluates PT codes for porous media, but also refines the standard PT comparison
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benchmark. We show that "classical statistics," which exclusively focus on particle localization,
detection, and linking, might not penalize aggressive linking adequately. Specifically, classical
statistics aren’t effective for understanding the error associated with PT algorithms that "force"
links between trajectories under improbable circumstances. To provide a more accurate
comparison between PT methods, we use a suite of experimental statistics that offer significant
depth in understanding of PT results compared to classical statistics. Moreover, we shed light on
the potential for PT error to skew transport analyses of tracer particles in porous media.

Concomitantly, we unveil a novel PT code (V-TrackMat), tailored for microfluidics
experiments, crafted by the collaborative efforts of some of the coauthors. The other three
algorithms we tested for this chapter (Trackpy, TrackMate-LAP, and TrackMate- Kalman) are
described in further detail in the methods section. Our findings highlight V-TrackMat’s ability to
strike a balance between accuracy and judicious tracking at the expense of speed. Through this
exploration, we endeavor to amplify the discourse in PT — emphasizing the shortcomings of
traditional metrics, unveiling the intricacies of various PT algorithms, illuminating the impacts of
PT error on transport analysis, and introducing a robust PT method.

The work presented in the chapter is an enhanced version of the published article:
“Berghouse, M., Miele, F., Perez, L.J., Bordoloi, A., Morales, V.L., & Parashar, P. Evaluation of
particle tracking codes for dispersing particles in porous media. Sci Rep 14, 24094 (2024).

https://doi.org/10.1038/s41598-024-75581-0". This chapter builds on the work presented in the

published paper by establishing the motivation through reflections on chapter 2, discussing the
generation of pathlines in greater detail, discussing how the limitations of particle tracking may
have impacted the results of chapter 2, and presenting a rudimentary comparison of different PT

methods for experimental data.
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Table 1. PSDR values for all simulations in this chapter.

Bimodal 5,=09 | S,=26 | 5,=99 | S5,=19.6
pp = 1.25¢™* 42.8 15.5 4.6 25
pp = 2.50e™* 24.5 10.4 3.0 17
pPp = 5.00e™ 14.9 6.6 2.3 11

Unimodal 5,=08 | 5,=18 | 5,=6.7 | S, =113
pp = 1.25¢™* 34.3 17.4 5.3 3.1
pp = 2.50e™* 22.8 12.6 4.0 2.4
pPp = 5.00e™ 15.8 8.9 2.6 16

3.3 Methods

3.3.1 Simulations

PT codes have been extensively compared for Brownian motion and constant-velocity motion in
open media [26]. However, both 3D natural [36] and 2D engineered porous materials [37] are
characterized by complex pore structures that result in broadly distributed velocity fields which
are known to challenge tracking algorithms, so we chose to simulate dispersing particles in porous
media for our comparison. We used simulations to create our ground truth imagery and
trajectories, because although the gold standard for PT comparison is experimental data, there
are no manually-labeled videos of dispersing particles in porous media that can be used as the
ground truth.

For each of the 2D geometries (described in the paragraph below), we used OpenFOAM
[38] to solve the flow fields, then calculated the pathlines via the Matlab function
"interpstreamspeed" (Fig. 1a). The “interpstreamspeed” function in MATLAB refines streamline
vertices by interpolating them based on the speed of a vector field, accommodating both two-

dimensional (2D) and three-dimensional (3D) datasets. Given spatial coordinates (X,Y,Z) on a
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regular grid, velocity components (U,V,W), and an initial set of streamline vertices V;, the

function calculates or accepts a speed field S, defined as S =VU?2 + V2 to guide vertex density.

%VV\\/‘Q i . 'vj”‘d

Figure 1. This figure shows the general workflow for the construction of simulated trajectories. (a) Pathlines
for the bimodal simulation at PSDR = 1.1 colored by normalized speed. (b) Simulated imagery analyzed by
various particle tracking methods. (c) Zoomed in section of simulated particles showing overlapping
particles. Most issues with detection occur due to this overlapping, which results in false negatives. (d)
Particle at full resolution (10000x10000) during simulation creation. (e) Particle at final resolution
(2000x2000) after interpolation.

The speed at each vertex is interpolated using MATLAB’s “interp3” (for 3D) or “interp2”
(for 2D) functions, yielding speed values S; at each streamline position, which are scaled by a user-
defined factor SF to control vertex spacing. The function then resamples vertex positions by
computing cumulative distances d; = ;:1|V] - Vj_1| along the streamline and placing new
vertices P;, at fractional positions based on interpolated speeds, such that d;, = §; - SF governs
the spatial resolution. The resulting output is a refined streamline that adapts to local velocity
variations, producing denser sampling in regions of slower flow and sparser sampling in regions of

faster flow. The obtained flow fields exhibited large variations in speed distributions, resulting in

simulations that we termed as "bimodal" and "unimodal". The pathlines were seeded with
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relatively equally spaced particles throughout the whole domain (with minor fluctuations due to
grain positions), and their motion along the pathlines over time resulted in the final ground truth
imagery and trajectories (Fig. 1b). A small amount of random movement (Gaussian distribution
with u =0 and o = 0.5 pixels) was added on top of the ground truth advective trajectories. This
amount of random motion can be considered a reasonable representation of diffusion in
advection-dominated conditions (Pe ~ 500). Given a characteristic length of about 61.5 pixels

(roughly equal to the average pore throat length), and a mean particle speed of between 2.6 and

[2.6,10.2]%6.15

s , which gives us a D in the range of [0.32, 1.25]

10.2 px/frame, we can calculate D =

px?/frame. Because we wanted to primarily focus on the linking abilities of different PT algorithms,
we removed the background (cylinders of the geometry). However, due to overlapping particles
in our simulations (Fig. 1c), we weren’t able to completely remove the influence of detection
accuracy. The particles with a diameter of 8 pixels (for a 2000x2000 pixel domain) were defined
with a 2x2 black dot in the center with slightly increasing brightness for the surrounding pixels
(Figs. 1d and 1e).

Our bimodal simulations were derived from experimental digital microscopy imagery of a
quasi-2D porous media microfluidic device. The geometry of the microfluidic device, and thus our
bimodal simulations, consists of a staggered array of equally sized and spaced grains (Figs. 1a and
2c), also referred to as a microfluidic lattice [8]. The unimodal simulation was derived from a
geometry with similar average porosity, but with random placement and sizing of grains and pore
throats (Fig. 2d). We term the first group of simulations as "bimodal" (Fig. 2a), because there are

two clear peaks in the speed distributions for Sg;,;, = 2.6. We term the other group of simulations

as "unimodal" (Fig. 2b), because there is only one clear peak at all mean speeds.
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In addition to examining the impact of particle speed distribution on PT performance, we
also vary the number of particles in our simulations. We use the initial number of particles at the
beginning of each simulation to calculate the particle density (particles/pixels?). Particle densities

decrease over time as individual particle trajectories disappear or exit the simulation bounds.
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Figure 2. This figure shows the particle speed distributions for the bimodal (a) and unimodal (b) simulations,
and the simulated pathlines for a bimodal (c) and unimodal (d) simulation for PSDR = 2.3 and PSDR = 2.6
respectively. The speed distributions in (a) are normalized by the mean speed of the lowest-PSDR bimodal
simulation (19.6 pixels/frame). The speed distributions in (b) are normalized by the mean speed of the
lowest-PSDR unimodal simulation (11.3 pixels/frame). The simulated pathlines and variety of speed
distributions illustrate the large range of conditions our PT codes were tested in.
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The primary goal of this chapter is to provide a rigorous comparison of different linking
algorithms for simulations of dispersing particles in varying geometry and at different particle
density and speed. Although this does not cover the full range of variability expected in videos of
dispersing particles, we chose to focus on PSDR and geometry because they highlight differences
in the linking capabilities of each PT code. However, performance of PT codes can also be impacted
because of limitations of methods and devices to capture and process videos of dispersing
particles. These limitations could potentially inject random fluctuations and intermittency
(blinking) in particle positions. Thus, we also provide an analysis of simulations where we increase
the magnitude of the random displacement on top of our purely dispersing particles, and
randomly set 2% of particles to be invisible for each frame. Specifically, we enhance the random
motion by using o = 2 pixels (instead of 0.5) in the method to represent normally distributed weak
diffusion as described above. The displacements were restricted to be less than 6 pixels (three
standard deviation). This random motion accounts for the combined effects of diffusion, camera
jitter, and oscillations in particle brightness. The intermittency generally accounts for particles
moving in and out of the focal plane of the camera, which can be caused by a variety of
phenomena such as diffusion, particle-particle interactions, particle-wall interactions, and camera
exposure time. The magnitude of the intermittency (2%) was calculated through an analysis of
microfluidic experiments of colloids (detailed methods provided in Supplementary Methods).
Both of these additions can be thought of as increasing the noise of the trajectories, so in this
chapter we refer to these experiments as the "noisy simulations". All other simulations in the
chapter, as described above, contain a minimal amount of noise to ensure tracking capabilities.
We thus refer to the main simulations as the "minimal-noise" simulations when comparing their

results with those of the noisy simulations.
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3.3.2 Particle Tracking

In order to focus on the depth of our PT comparisons, we chose to analyze four PT
algorithms. For this study, we compared the outputs of TrackMate [39,40], Trackpy [41], and a new
PT method developed by our co-authors named "V-TrackMat". We chose TrackMate (TM) and
Trackpy (TP) due to their high popularity in bio-image analysis, and because they use different
linking algorithms. Each algorithm tested in this dissertation chapter uses a nearest-neighbors-
based method to link particles. To try and expand the variety of investigated algorithms, we also
tested two deep learning (DL) methods [42, 43], but found that they either couldn’t be run on our
hardware (more than 8 GB VRAM or too slow for CPU-based models) or did not perform as well
as TM, TP, and V-TrackMat. Likely, the high resolution of our images (2000x2000 pixels), and small
size of our particles ( 8 pixels) precludes the effective use of convolutional networks and other
common DL-based architectures. However, we did not test any standard models for object
detection such as Yolov8 or FairMOT [44], so it is possible there are available architectures that
outperform the traditional methods. A more rigorous investigation of all available DL models is
needed to determine state of the art performance, and thus develop an accurate comparison
between traditional and DL-based methods.

TrackMate is one of the most popular methods for particle tracking in the field of
biological imaging. TM runs through Imagel [45], which makes it challenging to script PT analysis.
However, TM has shown high levels of accuracy [26], and its use within Image) means it is well
suited for quick analytical workflows where visual inspection of results is necessary. TM allows the
user to pick from a variety of linking methods, but we only chose to analyze the Kalman and Linear
Assignment Problem (LAP) methods. The Kalman method [46] uses the autocorrelative tendencies

of trajectories to predict the velocities of particles, and therefore their positions in subsequent

114



frames. The LAP method creates a cost matrix that finds the best match for each particle between
two frames [47]. The cost matrix can be assigned additional variable-specific penalties that can
improve linking, although this feature was not explored in our study. Both methods allow for gap-
filling of particles that were missed in one frame and appeared up to a threshold number of frames
after they were lost. TM also offers advanced filtering options that allows for easy removal of
trajectories appearing to be erroneous. For example, TM allows for filtering based on the number
of spots, track length, mean, min, and max speed, directional change rate, and linearity of forward
progression.

Trackpy (TP) is another popular PT method written in Python, which makes it generally
more scriptable than TM. However, this also means that some programming abilities are needed
to effectively use this PT method. Furthermore, many of the trajectory filtering and visualization
features that TM has are not part of the TP API, and would need to be manually coded from
scratch. One area that TP excels in is its analysis functions. The API has functions to calculate pair
correlations, MSDs, particle drift, van Hove correlations, and velocity correlations (amongst other
functions). The linking algorithm for TP is based off the Crocker-Grier algorithm [48], one of the
fundamental algorithms that many PT codes use in some variation. TP also has a special linking
function that incorporates some velocity prediction element (“NearestVelocityPredict”), which
was used for all our experiments. This velocity-based linking algorithm differs from the Kalman
filter in that the Kalman filter considers the history of a trajectory (accounts for velocity variation
in time), whereas the TP linking algorithm considers the velocity of the nearest particle (accounts
for velocity variation in space).

V-TrackMat is a new Matlab-based PT method developed by some of our co-authors that

has been successfully applied to tracking particles in three-dimensional and bioclogged
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environment [49, 50]. The version of the code used in this chapter can be found at

https://github.com/mberghouse/V-TrackMat. The development of this code was motivated by the

need for a customized MATLAB-based code for 2D and 3D PT to both allow a secondary linking
phase between anachronistic trajectories and further overcome the current limitations of TM and
TP for crowded suspension and long-time image acquisitions. Indeed, accuracy of TP has been
reported to suffer for crowded suspension [51] while TM resulted in several crash episodes during
the linking step for benchmark experiments of particle tracking in microfluidics-disordered media
for a total number of frames above 2000 at PSDR = 1.4. Although V-TrackMat has been
developed for PT of 1 um diameter latex particles in microfluidics application under laminar flow,
it can be used for a variety of other PT applications. It first uses a nearest-neighborhood criteria
by calling the ipdm routine between coordinates of centers detected in two consecutive frames,
named as parents for particles detected at frame n and daughter for frame n + 1. The pairing has
been optimized by assuming that the frame rate is high enough so that the mean particle’s jump
is lower than the mean inter-particle distance, mitigating the effect of intermittent behavior of a
single particle’s velocity under flow in confined media. Thus, the 2-frame velocity is computed for
each pairing and the ipdm function is computed between daughters and the projection of the
future position for the parents displaced by the quantity v dt along the tangent direction. After
the first loop over the full set of frames is computed, the set of reconstructed trajectories is then
processed by gluing anachronistic trajectories in the 2D+2D space. This is reasonable for high Pe
and low Re where particles passing through the same position with the same velocity are, in fact,
following the same streamline. To glue trajectories, a pairing was first assigned by minimizing
distances between parent ending points and daughter starting points. The glue is accepted only

for pairing whose distance is compatible with a jump allowed by both parents ending velocity and
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daughter starting velocity. For multiple pairings, the criteria of the minimum in of |vpf - vdi| is

then applied. This second loop of gluing anachronistic particles can potentially be iterated multiple
times until no new pairings are assigned. The algorithm can be applied to track particles from time
lapse images acquired over different fields of view. A common challenge for any PT code is the
increasing memory cast with both the increasing time and new incoming particles as a new ID
must be assigned while keeping track of the already existing ones. This means that the size of the
matrix composed by the number of trajectories by the number of frames increases linearly with
time and flow rate. To save computing time and avoid memory dredge, V-TrackMat code considers
particles as lost if, for 5 consequent frames, no pairing has been assigned. In this case, V-TrackMat
saves the trajectories on the fly into binary files and finally removes them from the matrix.
Although our goal in this chapter was to test the ability of the linking algorithms for each
code, it worth noting that detection is an important part of the PT workflow. V-TrackMat’s detector
was specifically designed to find bacteria in particular sets of experimental imagery, and we found
that it did not perform well for the simulated imagery used in this chapter. Both TP and TM use
robust detection methods, and no significant differences were observed from each of the
detection methods upon initial inspection. For V-TrackMat, we detected spots with TM, then

exported these spots to Matlab to perform linking with V-TrackMat.

3.3.3 Comparative Metrics

To understand the true performance of each PT method, we used multiple types of comparative

|”

metrics. We used “classical” statistical methods, which are similar to those described in [26]. In
addition, we used experimental statistics and visual analysis of trajectories. The classical statistics

used in this study are the false link rate (Fig. 3a), mean path length (Fig. 3b), and the Euclidean
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distance (Fig. 3c). These statistics are aimed at diagnosing basic problems with particle detection,
linking frequency, and linking accuracy (the percent of correct links between two frames). Since
we simulate the movement of tracer particles in a microfluidic device under constant flow, we also

chose to use experimentally relevant statistics as PT comparison metrics.
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Figure 3. This figure shows visual representations of all classical statistics, and one experimental statistic,
used to compare particle tracking performance in this chapter. In all panels, predicted points and trajectories
are green, and ground truth points and trajectories are blue. (a) Snapshot of particles in a single frame to
illustrate the false link rate (FLR). A false positive implies an erroneous point that was linked to another point
in a previous frame. A false negative implies a missing link for a true point. Thus, FLR tests particle detection
and missed links on a frame-by-frame basis. (b) Mean path length (MPL), shown here for two ground truth
trajectories of length 7. Subscript i represents each successive line segment in time, and subscript j
represents each trajectory. MPL tests missed links over time, also known as trajectory splitting. (c) Mean
Euclidean distance (ED), shown here for one ground truth trajectory and one predicted trajectory (each of
length 7). ED tests localization, detection, and linking accuracy (but in our case of simple particles and no
background, primarily linking accuracy). To compute this statistic, we search for ground truth trajectories
that are on average less than two pixels away from the predicted trajectory. From the set of matching
trajectories, such as those pictured in the figure, we can calculate the ED. (d) Diagram of two ground truth
trajectories (shown in dark blue) with potential PT-based trajectories (shown in light blue, yellow and green,
with each color signifying a different trajectory predicted by a PT method) on top to illustrate the classical
errors (and concept of the turn angle ¥ (t)) discussed in this chapter.
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To compare each PT code for the specific scenario of microbial transport, we used velocity

autocorrelations C,(17) = (|v,,|(t + T) - v(t)), speed-angle joint probability density contours,

— 2 — 2
which, are calculated from the particle speed v, = G xt)A:(yt“ Y0” and turn angle a; =

tan‘l(m)—tan‘i(m) data, and mean square displacements MSD(t) =
Xt+2~Xt+1 Xt+1~Xt

% N Ir () — r;(0)]? (Fig. 3d) as our experimental metrics. The MSD and C, for each PT output

were calculated via the MSDAnalyzer [52], a companion postprocessing program for TrackMate.

All other statistics were calculated via scripts written in-house.

3.4 Results

3.4.1 Trajectory Patterns llluminate PT Method Variations

To understand PT performance at a visual level, we plotted a small window of trajectories
for the bimodal and unimodal simulations for PSDR < 1.7 (Fig. 4). Some selected trajectories for
PSDR = 3.0 are also given in Supplementary Fig 3. For the bimodal simulation at PSDR = 3,
trajectories from all PT codes reasonably mirror the simulations. However, this congruence quickly
diminishes at PSDR = 1.7 (Fig. 4b), with marked deviations underscoring the nuances of each
linking algorithm. It’s noteworthy that for PSDR < 1.7 (Figs. 4a and 4b), trajectories close to the
cylinders (i.e., slow trajectories) are detected more accurately compared to the faster trajectories
in the pore throat. In addition to increased speed, particles in the pore throat exhibit spatial
convergence, which results in a large local decrease in PSDR. This observation carries over to the
unimodal simulations (Fig. 4c), which exhibit consistent patterns across PT codes. A pervasive

trend emerges: PT codes tend to underestimate the likelihood of particles moving at high
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Figure 4. Sample trajectories for all PT codes for the low-PSDR bimodal and unimodal simulations. Each plot
shows a 400x400 pixel section of the whole domain. Within a plot, each line corresponds to a unique
trajectory (with random colors used to show the contrast between individual trajectories). (a) Bimodal
simulations for PSDR = 1.1. (b) Bimodal simulations for PSDR = 1.7. (c) Unimodal simulations for PSDR = 1.6.
All algorithms suffer from trajectory splitting and erroneous linking for these low-PSDR simulations. TM-
Kalman, TM-LAP and V-TrackMat clearly outperform TP in all scenarios. Although TM-Kalman and V-
TrackMat have more clearly false links that stretch across the pore space (jump from one group of
streamlines to another), TM-LAP has a much larger amount of zig-zagging trajectories caused by erroneous
links between close particles. The low-PSDR unimodal simulations generally show the same trends as the
bimodal simulations; however, the differences between TM-Kalman, TM-LAP, and V-TrackMat are less
significant.
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velocities for a variety of simulated speed distributions, especially when spatial convergence
further reduces PSDR.

Probing deeper into individual PT code performances for the bimodal simulations,
especially at lower simulated PSDRs, TM—Kalman stands out with superior accuracy, although it’s
not exempt from erroneous links at elevated speeds. In particular, TM-Kalman shows a significant
amount of erroneous long links across pore spaces (streamlines don’t cross the pore space in our
bimodal simulations, so any link across the pore space is a false link). TP shows the greatest
amount of false links and split trajectories (further explained in next section) at PSDR < 1.7 (Figs.
4a and 4b). TM-Lap similarly exhibits pronounced difficulties in linking high-speed particles,
though not as significant as TP. At PSDR = 1.7, V-TrackMat trajectories generally resemble those of
TM-LAP and TM-Kalman in terms of accuracy, although there are a smaller number of V-TrackMat
trajectories. At PSDR = 1.1 (Fig. 4a), TM-Kalman and V-TrackMat appear to outperform TM-LAP.
Although TM-Kalman and V-TrackMat may have more erroneous links across the pore space, TM-
LAP has a much greater number of zig-zagging trajectories (links going back and forth between
two or more different particles), and less true trajectories that last a significant distance. Thus,
although V-TrackMat’s linking algorithm is less aggressive than either TM algorithm, V-TrackMat
captures a substantial portion of accurate trajectories.

The unimodal simulations at PSDR = 4 (Supplementary Figure 3) further show that all
algorithms besides TP have robust performance regardless of geometry. At PSDR = 1.6 (Fig. 4c), all
algorithms show problems with false links and split trajectories. Similar to the bimodal results, V-
TrackMat and TM-Kalman seem to have a larger amount of accurate trajectories than TM-LAP.
Thus, general algorithm performance is largely independent of the geometry in which the particles

are tracked. However, it should be noted here that the range of possible particle speeds in our
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simulations, which is largely impacted by geometry and flow conditions, only spans 3-4
magnitudes (Figs. 2a and 2b). High fidelity simulations of Lagrangian particles in porous media
show speed distributions that range up to 8 orders of magnitude [53], so we can’t be confident
that our findings (relative rankings of PT performance) would remain accurate for transport in any
geometry or flow condition. Furthermore, to focus on linking, we didn’t include any background.
However, in real experiments that image bacteria in microfluidic devices, the geometry has a

significant impact on tracking performance due to the presence of light scattering around grains
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Figure 5. This figure shows the a comparison between the speed distributions for each PT code for the
lowest-PSDR bimodal (a) and lowest-PSDR unimodal (b) simulations. The speed distributions in (a) are
normalized by the mean speed of the lowest-PSDR bimodal simulation (19.6 pixels/frame). The speed
distributions in (b) are normalized by the mean speed of the lowest-PSDR unimodal simulation (11.3
pixels/frame). This figure shows the ability of each PT code to handle significantly different distributions of
particle speeds.

To further understand differences in our PT codes, we plot both the simulated (ground
truth) and PT-generated normalized speed distributions for our lowest PSDR bimodal (Fig. 5a) and

unimodal (Fig. 5b) simulations. To quantify these differences, we calculate the 1-Wasserstein
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distance (W) between each ground-truth and tracked speed PDF (Table 2). Visual inspection of
the PDFs, as well as the trends in (W1), indicate that TM-Kalman is able to reproduce the simulated
speed distributions the best, followed by V-TrackMat, then TM-LAP, then TP. Interestingly, each PT
code besides TP overpredicts the fastest speeds for the bimodal simulation, but underpredicts the
fastest speeds for the unimodal simulations. During tracking, an effort was made to use the highest
possible linking distance that did not result in a significant number of mislinks. Because the range
of speeds for the unimodal simulations is greater than that of the bimodal simulations, we were
unable to capture the fastest speeds in the unimodal simulation without causing significant false
links.

Table 2. W; between ground truth speed distributions and the speed distributions from each PT method for
the lowest PSDR bimodal and unimodal simulations.

BimodalUnimodal
TM-Kalman|0.1146 |0.1363
TM-LAP  |0.3400 |0.2489
TP 0.7536 |0.6349
V-TM 0.3434 |0.2158

3.4.2 Relationship Between Classical Statistics and PSDR

To develop a more large-scale understanding of the performance of each PT code, we use
a variety of classical and experimental statistics (Fig. 3). Each of these classical statistics target
different potential sources of linking error. Because the imagery had a high signal to noise ratio,
there were not many errors in the detection stage of PT for each simulation (only occurring due
to overlapping particles). Therefore, the false link rate (FLR) primarily shows the potential for a
particle to be unlinked, meaning there were no probable candidates for linking in nearby frames
(Fig. 3a). The mean path length (MPL) shows the propensity for trajectories to be fractured due to

lack of linking (Fig. 3b), and the Euclidean distance (ED) indicates the likelihood for links to move
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back and forth between particles, sampling a large number of particles for a single trajectory (Fig.
3c). A realistic diagram of each of these potential errors is shown in Figure 3d. Plotting these
statistics over a range of PSDRs reveals that TM—Kalman and TM-LAP consistently eclipse the
performance of other PT methods (Fig. 6). In particular, the bimodal simulations reveal several
task-relevant patterns. The mean path lengths (Fig. 6a) illuminate the tendency for V-TrackMat
and TP to generally have shorter trajectories compared to either TM method. This shortening in
TP’s trajectories is significantly accentuated, especially at low PSDR levels. We attribute this
phenomenon to ‘trajectory splitting’, where a particle is tracked for only a fragment of its presence
in the field of view. Intricacies of TP’s linking algorithm, which narrows the search space when
inundated with potential particles for the ensuing frame, underpin this observation. While
effective for slower-moving particles, especially in terms of memory requirements and algorithm
speed, this linking strategy is less adept at tracking high-velocity particles in a directed flow. For V-
TrackMat, the trajectory splitting seems to be a result of its more stringent linking algorithm.
Although all PT codes try to match all trajectories during linking, V-TrackMat seems to have more
extreme criteria that prevent incorrect links, as shown from the sample trajectories (Fig. 4). Thus,
many trajectories are lost by V-TrackMat due to the algorithm’s necessity for high-probability links.
Furthermore, the FLRs (Fig. 6b) point towards V-TrackMat’s propensity to either miss or
inaccurately record a particle in a frame. However, because this error is likely a result of careful
linking, the classical statistics may exaggerate the experimental errors for tracking algorithms such
as V-TrackMat’s. The EDs (Fig. 6¢) further highlight that TP and V-TrackMat often record the most
substantial discrepancies between the actual and tracked positions. This observation, particularly

for V-TrackMat, implies that a rigorous linking algorithm doesn’t invariably lead to precise
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trajectory reconstructions. Although untested, it is theoretically plausible that during velocity-

based linking or gluing, particles are incorrectly linked because they have similar velocities.
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Figure 6. This figure shows the results of the classical comparative statistics for both the bimodal and
unimodal simulations. For all plots, the size of the scatter points represent the particle density of the
simulation (larger points means greater particle density). a-c correspond to the bimodal simulations, and d-
f correspond to the unimodal simulations. (a) Mean false link rate (error due to detection and temporally
local missed links). (b) Mean path length of all PT-obtained and simulated trajectories. The ground truth is
shown as a black X. This statistic describes how often full trajectories are split (linking error over time). (c)
Mean Euclidean distance between true and predicted trajectories (error due to localization and linking
error). (d-f) Repeat of a-c but for the unimodal simulations. These figures generally indicate that V-TrackMat
and TP have the worst “classical” performance. Furthermore, classical statistics tend to follow a power law
trend as a function of PSDR. Power law fit equations and goodness of fit are given in Table 3.
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For unimodal simulations, classical statistics (Figs. 6d-6f) generally perform better than
their bimodal counterparts. The bimodal simulations have higher mean speeds than the unimodal
solutions (Table 1). Furthermore, the bimodal simulations (Fig. 1a) have a larger number of
particles at high speeds, which causes more difficulty in particle tracking. In addition, the unimodal
simulations show a greater range of speeds and are generally more reminiscent of speed
distributions of particles in porous media [54]. Thus, the unimodal simulations likely offer a more
comprehensive representation of generic PT code efficacy in porous media. While the general
trends mirror those in the bimodal findings, V-TrackMat performs comparatively better in the FLR
metric (Fig. 6d) and worse in the ED metric (Fig. 6f), and TP performs better in the ED metric (Fig.
6f). TP’s aforementioned challenges with fast-moving particles mean its performance slightly
improves in unimodal settings, which aren’t dominated by high speed trajectories. Still, TP’s mean
path lengths (Fig. 6e) depict a sharp decline as PSDR decreases, implying the persistent issue of
trajectory splitting in both bimodal and unimodal settings.

Table 3. Power law fit equations and goodness of fit for ED, MPL and FLR.

Bimodal a b R2 RMSE
ED 0.922 | -0.039 | 0.941 | 0.0210
MPL (TP) 238.9 | 0.268 | 0.510 | 141.00
MPL (TM-Kalman) 529.3 | 0.046 | 0.434 | 36.890
MPL (TM-LAP) 510.0 | 0.056 | 0.797 | 39.500
MPL (V-TrackMat) 363.9 | 0.161 | 0.767 | 55.250
FLR (TP) 0.023 | -0.508 | 0.884 | 0.0041
FLR (TM-Kalman) 0.019 | -0.342 | 0.813 | 0.0067
FLR (TM-LAP) 0.022 | -0.319 | 0.261 | 0.0080
FLR (V-TrackMat) 0.212 | -0.783 | 0.875 | 0.0288

Unimodal a b R2 RMSE
ED 0.849 | -0.019 | 0.923 | 0.0323
MPL (TP) 1189 | 0.448 | 0.885 | 55.620
MPL (TM-Kalman) 425.9 | 0.059 | 0.503 | 29.770
MPL (TM-LAP) 432.0 | 0.052 | 0.940 | 14.160
MPL (V-TrackMat) 3704 | 0.101 | 0.881 | 17.960
FLR (TP) 0.043 | -1.226 | 0.901 | 0.0022
FLR (TM-Kalman) 0.008 | -0.255 | 0.142 | 0.0032
FLR (TM-LAP) 0.007 | -0.223 | 0.110 | 0.0033
FLR (V-TrackMat) 0.045 | -0.690 | 0.931 | 0.0032
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The results of the classical statistics imply that TM-Kalman and TM-LAP outperform V-
TrackMat in all cases, but from the sample trajectories (Fig. 4), we have shown this to not be true.
Also, the trajectories show TP performs much worse than the other algorithms at low PSDR, but
this is not reflected by the FLR and ED metrics. We posit that the primary reason for the disconnect
between the classical statistics and the sample trajectories is that the FLR and ED metrics
underpenalize aggressive linking. The FLR will always be lower when more links are forced, since
the probability of false positive detection is very low. The ED metric will always be higher when
more links occur between different trajectories, but if the trajectories are nearest neighbors, then
the error will be relatively small. Thus, long trajectories and links across the pore space (such as
those of V-TrackMat and TM-Kalman) will result in more ED error than zig-zagging trajectories
between close neighbors (such as TM-LAP) will. Ultimately, the FLR and ED underpredict PT error
for nearest-neighbor based algorithms with little constraint for linking. As a result, these statistics
fail to grasp the nuanced differences between PT codes.

Beyond comparing PT codes’ performances, we also demonstrate that all classical
statistics have a power law relationship with PSDR, although some relationships are more
significant than others (Table 3). As PSDR is reduced, all PT codes generally exhibit increased ED
and FDR, and decreased MPL. V-TrackMat and TP show a steeper relationship between FDR and
PSDR than either TM algorithm, which generally indicates that the TM algorithms are more robust
with respect to FLR performance over a range of PSDRs (Figs. 6a and 6d). V-TrackMat and TP also
show steeper relationships between MPL and PSDR, further demonstrating the resilience of the
TM algorithms when considering classical linking failures. V-TrackMat and TP also generally show
more significant (lower RMSE) power-law relationships than the TM algorithms, indicating that

classical PT error for V-TrackMat and TP is more predictable. Furthermore, classical statistics from
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unimodal simulations (Figs. 6d-6f) present slightly different power law relationships compared to
those from bimodal simulations (Figs. 6a-6¢). Thus, the choice of PT algorithm, and variations in
ground truth particle speed distributions, can influence the specifics of these power law

relationships.

3.4.3 Experimental Statistics Highlight Task-Specific PT Performance

The classical statistics from bimodal simulations (Fig. 6) echo many patterns observed in
the sample trajectories (Fig. 4). However, there are notable deviations. The sample trajectories,
for instance, present V-TrackMat as clearly superior to TP and comparable or superior to TM-LAP.
To discern which mode of analysis — comparative statistics or visual trajectory inspection
— offers a more accurate picture of PT performance, we used a variety of experimental statistics.
In the bimodal simulations, the normalized speed-angle joint probability density difference
heatmaps rank TM—-Kalman as the top performer, with V-TrackMat and TM-LAP occupying
intermediate positions and TP trailing (Fig. 7). All codes demonstrate strong tracking performance
at PSDR > 2.5, but V-TrackMat and TP’s limitations become evident at PSDR < 2.3. TM-LAP and
TM-Kalman significantly outperform V-TrackMat for PSDR > 1.7. However, at PSDR = 1.1, V-
TrackMat performs better than TM-LAP, as shown by the large amount of overprediction for the
probability of low speed and high turn angle particles (Fig. 7). This disparity is likely rooted in the
LAP algorithm’s propensity for aggressive linking that doesn’t take particle velocities into account,
in contrast to V-TrackMat’s more conservative velocity-based approach. Consequently, at PSDR =
1.1, while LAP is prone to errant predictions for high speed particles and forces links with large
turn angles, V-TrackMat is more likely to keep particles unlinked, and only significantly
overpredicts low turn angles. In other words, V-TrackMat often refrains from making connections

altogether, and when V-TrackMat does have false links, its reliance on expected particle velocities,
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akin to TM-Kalman, ensures that the errors are relatively benign (with respect to velocity and angle
distributions) compared to TM-LAP.

In the context of unimodal simulations (Supplementary Figure 4), both the V-TrackMat
and TM algorithms predict speed and angle statistics with near perfection. V-TrackMat and TM-
Kalman perform slightly better than TM-LAP, which can be seen from the slightly greater
underprediction of high speed and low turn angle particles for TM-LAP at PSDR < 2.6. TP shows
relatively poor performance for all PSDR < 3.1. These observations further reinforce the general
trends seen in the sample trajectories (Fig. 4). They confirm the case presented by the classical
statistics that TM-Kalman has superior performance, but they significantly contrast the relative
classical results of V-TrackMat and TM-LAP. Specifically, the speed-angle distributions (both
bimodal and unimodal) show that TM-LAP may be favorable for PSDR = 1.7, but that V-TrackMat
is superior for PSDR < 1.6.

Velocity autocorrelation function (C,) and mean squared displacement (MSD) analysis (Fig.
8) further corroborates the trends evident in the speed-angle heatmaps. It should be noted here
that we only present the first 20 frames of the lowest and highest-PSDR simulations in the main
text of this chapter, although the full C, and MSDs for all simulations can be observed in
Supplementary Figures 5 and 6. Because our simulations don’t use reinjection to keep the number
of particles in the field of view relatively constant, the C, and MSDs for our simulated particles are
unrealistic past 20-30 frames. Since the focus of our analysis is on the relatively accurate
simulation of dispersing particles in porous media, we chose to focus on the subset of our results
that are the most realistic.

At PSDR = 34.3 - 42.8, all PT methods align closely with the simulated autocorrelations

and MSD ratios. There is some slight deviation for the MSD ratio at late times for the bimodal
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Figure 7. Speed-angle joint probability density difference heatmaps for the bimodal simulation. Speeds
determined from particle tracking (S,) are normalized by the mean speed of the respective simulation (Sim).
Red corresponds to an underprediction of probability density, blue corresponds to an overprediction of
probability density, and white corresponds to an accurate probability density prediction within the speed-
angle feature space. These results generally show the same trends as the sample trajectories (Fig. 1). At
PSDR = 2.5, all algorithms show strong performance as indicated by the lack of strong color. All PT methods
besides Trackpy and V-TrackMat show good replication of the simulation for PSDR > 1.7. At PSDR = 1.1, TM-
Kalman still performs best and TP performs worst, but V-TrackMat surprisingly outperforms TM-LAP. Thus,
at very low PSDR, velocity-based algorithms result in significant improvements to PT performance.
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Figure 8. MSD ratios and VACFs for unimodal and bimodal simulations for high (a and c) and low (b and d)
PSDRs. The MSD ratio is caluculated as the MSD obtained from particle tracking divided by the simulated
MSD. An MSD ratio of 1 implies perfect accuracy. The bimodal MSD ratios are shown by dashed lines, and
the unimodal MSD ratios are shown by solid lines. The simulation, or ground truth, is black, and the results
from each PT method are different colors. For the unimodal simulations, PSDR =34.3 (aand c) or PSDR=1.6
(b and d). For the bimodal simulations, PSDR =42.8 (a and c) or PSDR = 1.1 (b and d). These figures generally
confirm trends present in the other experimental results. Furthermore, the MSDs and VACFs generally show
the same trends, implying that a good prediction of MSD allows for a good prediction of C,. However, unlike
the other experimental statistics, the C, is not a reliable proxy for general PT performance.

simulation for TP and V-TrackMat (Fig. 8c), but generally, all results are highly accurate. However,

at PSDR = 1.1 - 1.6, all PT methods show large deviations in autocorrelation and MSD ratio. The
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autocorrelation for the low PSDR bimodal simulation (Fig. 8b) shows decent performance for TM-
Kalman, but poor performance for all other PT methods. The repetitive motion of the C, is
indicative of the wave-like periodic movement of the particles dispersing through the lattice-like
geometry of the bimodal simulations. TM-Kalman is slightly able to capture this feature of the
autocorrelation, but the other PT codes are not. The most likely explanation for this lies in the
false links and splitting of fast trajectories. As previously discussed, as particles travel through the
pore throat, they get closer together and speed up, which causes a decrease in the local PSDR.
Thus, the C, reveals that TM-Kalman is more likely to capture these fast/dense particles in the pore
throats than the other PT codes are. The unimodal results for the C, at low PSDR (Fig. 8b)
surprisingly show that V-TrackMat outperforms TM-Kalman, and TP outperforms TM-LAP.
However, the full C, (Supplementary Figure 4) indicates the TM-LAP outperforms TP at t > 30.
Likely, the C, for TP is relatively accurate at early times because TP can only track very slow
particles, so there are no significant false links that would cause velocity decorrelation between
successive timesteps. TM-LAP, on the other hand, can track much faster particles, but may also
erroneously link these fast particles, meaning a greater amount of velocity decorrelation. Thus,
although it is important to know how accurate the C, is for general analysis of particle transport,
the C, accuracy can’t be used as a general proxy for total particle tracking accuracy.

The MSD ratios for low PSDR (Fig. 8d) show significant deviations from the simulated MSD
for each PT code. Both the bimodal and unimodal results show TM-Kalman is able to most closely
follow the true MSD (i.e., have an MSD ratio of 1), then V-TrackMat, then TM-LAP, and finally TP
shows a complete disconnection from the true MSD. Interestingly, the unimodal simulations show
an improvement in the MSD ratio over time, which indicates that for each PT code, the history of

previous particle positions and links can improve the accuracy of tracking. For the bimodal
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simulations, we see a decrease in the accuracy of the MSD ratio over time (Fig. 8d). However, the
full time-series for the lowest PSDR bimodal simulation (Supplementary Figure 5) shows a
significant improvement in the MSD accuracy over time for both V-TrackMat and TM-Kalman.
Thus, velocity-based algorithms show a clear advantage in late time prediction of MSDs for low-
PSDR scenarios, regardless of geometry.

Generally, our experimental statistics reveal that while rudimentary comparative statistics
can offer broad insights into PT code competencies across various tracking scenarios, they might
fall short in pinpointing optimal codes for specific particle motions with particular analytical
objectives. In our bacterial dispersion simulation within porous media, these statistics fail to
elucidate speed, angle, autocorrelation or displacement distribution accuracies — all crucial for
comprehending bacterial transport. Furthermore, these comparative statistics tend to
underpenalize aggressive linking. Thus, basic comparative statistics might not capture the full
spectrum of PT code capabilities. A more complete analysis, which can be done through a variety
of statistical and visual methods, is indispensable for discerning the optimal PT code tailored to

specific conditions.

3.4.4 PT Performance for Simulations with Noisy Trajectories
While the primary analysis in this chapter revolves around simulations where trajectories only vary
in speed and particle density, we have also provided an analysis of PT performance for simulations
that contain more noise depicting experimental errors in video capture and processing.
Specifically, we analyzed PT performance for simulations in which the particles had enhanced
random displacement (Gaussian distribution with u = 0 and o = 2 pixels) added to the purely
advective tracks, and 2% of the particles were dropped in any given frame to account for particle

intermittency. The random displacement is a simple representation of a variety of experimental
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Figure 9. Sample trajectories for all PT codes for the low-PSDR bimodal and unimodal simulations with
random motion and 2% particle intermittency. Each plot shows a 400x400 pixel section of the whole domain.
Within a plot, each line corresponds to a unique trajectory (with random colors used to show the contrast
between individual trajectories). (a-e) Bimodal simulations for PSDR = 1.5. (f-j) Unimodal simulations for
PSDR = 1.5. (k-0) Unimodal simulations for PSDR = 8.1. Compared with Fig. 4, this figure (specifically the top
left of f-j) shows a slight decrease in tracking performance for similar PSDR due to the addition of trajectory
noise.

phenomena/positioning errors such as diffusion, camera jitter, and/or oscillations in particle
brightness. The intermittency represents particles moving in and out of the focal plane, which can
also be impacted by diffusion, particle-particle interactions, particle-wall interactions, and camera
exposure time. Both of these changes can be generalized as increasing the noise of the trajectories
in the simulations. The sample trajectories of the lowest PSDR simulations with the intermittent
and random-motion particles (Fig. 9) show the same general trends as those of the simulations
with minimal noise (Fig. 4), but for each PT code the errors are slightly higher in the case of the

noisy trajectories. The speed-angle distributions for the noisy unimodal simulations (Fig. 10) show
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that TP clearly has the worst performance for PSDR < 2.3 . For the highest PSDR noisy unimodal
simulation, the performance of all PT codes are comparable. At the lowest PSDR, TM-Kalman once
again shows the best performance. Similar to the unimodal results with minimal trajectory noise
(Supplementary Figure 4), V-TrackMat performs better than TM-LAP in all cases besides the
highest-PSDR simulation.

Ultimately, these results indicate that trajectory noise such as large random motions and
particle intermittency make the tracking process more error-prone, although the rankings of the
linking algorithms are not impacted by these potential experimental issues. However, a more
robust analysis of potential experimental errors would deal with a number of other factors such
as signal to noise ratio and particle shape/size. This would also require a rigorous comparison of
detection methods, which was beyond the scope of our work, but we recommend that future

researchers compare PT codes in the context of more diverse simulations.

3.4.5 Consequences of Particle Tracking Errors on Transport Analysis

Building on our comparative exploration of PT codes, the findings from the bivariate
speed-angle heatmaps, MSDs, and C, (Figs. 7 and 8, and Supplementary Figures 4, 5, and 6) shed
light on the dispersion dynamics of tracer particles within porous media. Specifically, they
underscore how inaccuracies introduced by PT errors can skew transport analysis. A predominant
manifestation of PT error arises from false links (Fig. 4d), leading to a systematic underestimation
of high-speed particles (Figs. 4, 5 and 7). This, in turn, results in a conservative estimation of
particle speeds (Figs. 5 and 7) and MSDs (Fig. 8). TP, which shows the most significant error due to
trajectory splitting, underestimates the particle speeds and MSDs to an extreme degree for low

PSDR.
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Figure 10. Speed-angle joint probability density difference heatmaps for the unimodal simulations with
random motion and 2% particle intermittency. Speeds determined from particle tracking (S,) are normalized
by the mean speed of the respective simulation (Ssim). Red corresponds to an underprediction of probability
density, blue corresponds to an overprediction of probability density, and white corresponds to an accurate
probability density prediction within the speed-angle feature space. Although these noisy simulations are
slightly harder to track, the general trends in PT performance remain the same.
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Other consequences of PT error, which can primarily be observed in the TP results, are
inflated turn angles (Fig. 7) and diminished or enhanced C, (Fig. 8a and 8b), attributable mainly to
trajectory splitting and erroneous linking. Furthermore, we find that in the case of the bimodal
geometry, where there is a periodic nature to the velocity of particles over time, only TM-Kalman
is able to slightly capture the periodicity of this autocorrelation.

Our analysis also emphasizes the paramount importance of experimental conditions
(related to particle speed and density) in achieving reliable PT outcomes. In the case of minimal-
noise simulations, a PSDR exceeding 3 ensures nearly flawless tracking, regardless of PT algorithm.
Conversely, a PSDR near or below 1 presents challenges for all PT codes. In scenarios characterized
by low PSDR coupled with directed particle movements, algorithms that harness velocity-based
linking emerge as the more prudent choice. In addition, the results for noisy simulations are worse
than for simulations with minimal noise (Fig. 4 and Fig. 9), which highlights the need for tight
experimental controls to improve the visual quality of the particles. Although some amount of
noise is unavoidable, these results show the importance of trying to ensure that all particles

remain in the focal plane of the acquisition device.

3.4.6 PT Algorithm Speed Comparison
In addition to performance analysis, we also report how long each PT code takes to link trajectories
(Fig. 11). Generally, TM — LAP is the fastest linking algorithm, then TP, then TM — Kalman, and V-
TrackMat is the slowest. Thus, we observe a significant trade-off between performance and
computation time — the best PT methods at low PSDR also take the longest. However, we must
also note that each PT code is developed in a different programming language (Python, Matalb

and Javascript), so we are unable to fairly assess the speed of the underlying algorithms.
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Figure 11. Amount of time each PT code takes during the linking stage for selected unimodal simulations.
Simulation speed is represented by scatter point size (large = 9.9 px/frame, medium = 2.6 px/frame, small =
0.9 px/frame). V-TrackMat consistently has the longest linking times, and TM-LAP has the shortest linking
times. All algorithms show a power law relationship between linking time and particle density. High speed
simulations generally take longer to link than low speed ones, and this difference increases at higher particle
density.

3.4.7 Connection to Chapter 2
The results presented in this chapter have significant connections to chapter 2. The flow field used
to generate our bimodal simulations in this chapter are the same as the ¢ = 0.42 flow fields
simulated in chapter 2 (chapter 2, Figs. 6¢c and 6d). Thus, although the simulated particles are
different than the bacteria in the experimental videos, the results of this chapter in reference to
the bimodal simulations should generally apply to our experiments in chapter 2. Given that some
of the videos for Geobacter and Acidovorax used for analysis in chapter 2 displayed jump lengths
of up to 120 pixels per frame, it is reasonable to believe that some of our analysis suffers from the

problems identified in this chapter.
To further probe this theory, we present zoomed-in trajectories (Figs. 12a-12d) and a

comparison of speed distributions (Fig. 12e) for the different PT methods identified in this chapter
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for one of our experimental videos of Geobacter at 5ul/h that was used in chapter 2. The sample
trajectories show that all algorithms do surprisingly well, although TP results in significantly more
erroneous links than the other algorithms do. Although it was not possible to calculate PSDR for
the experimental trajectories given the lack of ground truth data, comparison with our simulated
data would indicate the PSDR of this simulation was between 2 (Fig. 4b) and 3 (Supplementary
Figure 3). The speed pdfs (Fig. 12e) further indicate that each algorithm was able to, for the most
part, accurately track the bacteria. Although this comparison is not exactly accurate, because the
simulation PDF comes from the Eulerian flow fields and the distributions for each PT method come
from Lagrangian particle tracking. However, we posit that the flow field is adequately sampled as
shown by the density of the experimental trajectories (Figs. 12a-12d), meaning that flux
corrections are not necessary to make adequate comparisons between the two distributions.
Furthermore, even if flux-weighting were to shift the location of the simulation PDF, it is unlikely
that this shift would result in different rankings of algorithm accuracy. The results of the speed
PDFs indicate that TM-Kalman is especially good at tracking high-speed particles, which backs up
the claim other parts of this chapter that velocity-based algorithms offer improvements for
particles with directed motion. Furthermore, these results show how all PT algorithms tend to
underpredict high-speed particles in this experimental setting with fluid speeds of v,,, = 82.7
um/s, which further highlights the need for new developments in particle tracking that can

improve the extraction of motion statistics from high-speed particles.

3.5 Discussion

Our comprehensive analysis of PT methods underscores TM—Kalman as the leading PT

algorithm in terms of accuracy and robustness. While V-TrackMat emerges as a strong contender
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at low PSDR, TM-LAP stands out at high PSDR. TP, although impressive at high PSDR, falters

notably with disconnection challenges at PSDR < 1.7. Despite the TP authors suggesting that
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Figure 12. Comparison of PT methods for one of the experimental videos used for the analysis of Geobacter
in a ¢ = 0.42 porosity geometry with a flow rate of Q = 5”71“ in chapter 2. Zoomed-in trajectories for

Trackpy (TP) (a), TM-LAP (b), TM-Kalman (c), and V-TrackMat (d). The trajectories generally show strong
performance for all PT algorithms except TP. (e) Comparison of speed PDFs for each PT algorithm in relation
to the PDF obtained from the simulated flow field from chapter 2, Fig. 6d. TM-Kalman shows slight
improvements over other methods, but all representations of the speed PDF are generally accurate.

adjusting the “SubnetOversizeException” variable could rectify the constrained search space at
low PSDR, our attempts in this direction were unsuccessful. However, it should be noted that we

used TP version 0.5.0, and that a newer version may have more potential to rectify this error.
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Barring this error, TP would, in all probability, align more closely with the performance of other
methods at low PSDR.

It’s evident across the board that PT methods grapple with high FLRs, high ED, and
trajectory splitting/fragmentation, especially at PSDR < 1.7. However, we show that poor
performance in classical statistics doesn’t necessarily imply poor performance in experimental
statistics. Specifically, classical statistics underpenalize aggressive linking algorithms, and
overpenalize careful linking agorithms. In addition, we show that TM—Kalman, and V-TrackMat,
which both use particle velocities to enhance predictions, exhibit marked improvements at PSDR
= 1.1 relative to TM-LAP. Although TP also uses particle velocity information to make linking
predictions, the SubnetOversizeException issue was much more significant than any potential gain
due to velocity-based predictions. Thus, the leveraging of velocity data, especially for particles
dispersing in porous media which exhibit a wide range of potential speeds, emerges as a critical
factor in bolstering PT predictions.

Beyond algorithmic evaluations, this work highlights some of the common errors in
transport analysis that emerge as a result of PT error. We find that all PT codes underestimate
particle speeds and overestimate turn angles, and that poor tracking causes a significant loss in
the accuracy of reproducing cyclical autocorrelations. Furthermore, we advocate for the recording
of video data at a minimum threshold of PSDR > 3, a benchmark that promotes reliable tracking
irrespective of the algorithm employed. Finally, we show that experimental noise can reduce the
quality of the predicted trajectories from each PT code, but it doesn’t significantly impact the
relative rankings of each PT code.

While we do provide robust statistical comparisons between some of the best-known

open source PT codes, we recognize that our study is somewhat limited in scope. A more robust
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analysis would use a wider variety of PT codes (including DL-based ones), more task-relevant
statistics to test performance across a variety of domains, more variety of particle motions and
noise, more variety in imagery type, and would enlist the creators of each code to submit the
trajectories to be scored. Such an investigation was far beyond the scope of this chapter and would
require a large collaborative effort spanning multiple disciplines. Looking forward, we envision our
research catalyzing advancements in PT theory in three pivotal aspects. First, we urge future
studies to transcend the boundaries of classical statistics in PT code comparisons, emphasizing the
integration of experimental outcomes pertinent to specific applications. Second, our findings echo
the effectiveness of velocity-centric PT methods for dispersing particles in porous media,
extending their proven efficacy from constant velocity scenarios [26] to contexts characterized by
large velocity fluctuations in time and space. Third, we highlight the importance of maintaining a

reasonably high PSDR to achieve precise particle transport analysis.

Data Availability

Most of the data used in this study can be found at https://doi.org/10.5281/zenodo.10891931.

Please send any data requests to the corresponding author (Rishi Parashar).
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Chapter 4: DeepTrackStat: an End-to-End Deep Learning Framework for
Extraction of Motion Statistics from Videos of Particles

4.1 Abstract
As discussed in the previous chapter, particle tracking (PT) is a mature area of research that
traditionally has used Gaussian filtering and nearest neighbors-based algorithms to detect and
link features in a sequence of images. PT shares many similarities with the general task of object
tracking, although it is specifically designed for tracking objects that are usually small and have a
distinct shape shared amongst all particles in images that have little to no background. Although
object tracking is also a mature area of research, transferring the computer vision techniques from
general object tracking to PT presents significant challenges due to the sparsity and high
resolution of PT videos. To remedy these issues, along with problems of classical PT methods
presented in chapter 2, we present DeepTrackStat (DTS), a model that is able to bypass the
tracking process entirely and generate accurate statistics on speed, velocity components (Vx and
Vy), and turn angle for a wide range of PT scenarios including trajectories derived from Brownian
motion, Poiseuille flow, and porous media flow. In addition to its ability to handle a variety of flow
types, the model is robust to large variations in particle size, shape, brightness, speed, density,
and signal to noise ratio. One of the primary advantages of DTS is that it can reduce the time
required to obtain the target statistics from videos of moving particles by 6x (when compared
with classical methods). Furthermore, we show that DTS is able to predict the motion statistics of
particles with higher accuracy than a number of classical PT methods and simple deep learning
(DL) based methods. In addition, we show that DTS’ performance is comparable to Trackmate
(TM), which was shown to be the top-performing PT algorithm from chapter 2, for a wide variety

of simulated trajectories and experimental datasets of motile bacteria dispersing in porous media
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under a range of flow conditions. We further highlight that DTS significantly outperforms TM for
prediction of motion statistics for high-speed particles. We hope this work can be used to help
advance DL-based methods for particle tracking, and that our model provides significant time

savings and allows for improved analysis of particle trajectories.

4.2 Introduction

At a basic level, Particle Tracking (PT) is a set of algorithms used to detect bright spots and
determine their trajectories across multiple frames of a video. PT can be considered a subset of
the object tracking task, and it can be applied to any video data with moving objects, but it is
especially relevant for tracking small, spherical particles. This includes phenomena such as
bacterial dispersion and transport in porous media [1-8], cellular diffusion [9,10], biofilm
formation [11], chemotaxis [12-14], viral transport [15], and colloid filtration [16]. These
applications of PT are highly dependent on accurate measurements. For example, when PT
algorithms tend to miss fast-moving particles, this can cause an underestimate of the mean square
displacement [17].

Most PT frameworks consist of detection, linking, and filtering stages [18]. The detection
stage generally uses a Gaussian filter to filter and normalize an image, thus revealing local maxima
that correspond to the centroids of spherical objects of a certain diameter. Many strategies have
been developed to improve upon this general detection method [19, 20], and the most state of
the art detection algorithms use CNNs to improve particle recognition [21-23]. The linking stage
consists of connecting the detected bright spots across multiple frames in time to form the most
probable trajectory for each particle, and is generally where most PT algorithms differ from each

other. For linking of fast and dense particles, TrackMate (TM) [24] has been shown to be one of
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the best performing PT algorithms [18]. However, TM is also slow, and it may take significant
domain knowledge and experimentation to achieve accurate tracking results. Unlike detection,
very few DL-based methods have been developed for the linking stage. The only algorithm that
has been presented as an end-to-end DL-based framework for linking particle trajectories is
MAGIK [25], which uses a graph neural network to capture the spatiotemporal relationships
present in PT coordinate data. Although this algorithm boasts strong performance for the tested
scenarios, it is untested in scenarios of high particle speed and density, and requires a large
amount of VRAM (a coordinates shape of 100 frames by 1000 particles requires at least more than
24GB). Furthermore, MAGIK still requires another algorithm to perform the detection stage, and
then the coordinate data must be converted to node-edge format for model use (which is not a
trivial step), meaning it does not improve the ease, speed, or accuracy of the overall particle
tracking process. MAGIK can also be thought of as one of the few models that bridge the gap
between the fields of particle tracking and object tracking. Object tracking is a mature field within
the domain of computer vision that uses CNNs and vision transformers (VTs) to primarily track
people and cars [26, 27]. Although object tracking methods are robust in their task-relevant
performance, few have been trained to track the kinds of objects generally found in particle
tracking experiments.

To bridge the gap between the particle tracking and object tracking domains and improve
upon the extraction of motion statistics from PT data, we propose DeepTrackStat (DTS), a novel
end-to-end DL-based framework. Specifically, our model offers the ability to predict speed,
velocity (Vx and Vy) and turn angle distributions from a raw image sequence input. DTS is
designed to be as general as possible, meaning it can accurately predict statistics from a variety of

particle shapes, sizes, brightness, density, speed, and SNR, and a variety of trajectory motion types
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such as dispersive, straight, and Brownian. DTS is a two-stage system that consists of a speed
classifier (SC) and statistics-specific models (SSMs). An input image sequence is first classified
according to mean speed, then based on this classification, different ensembles of models are
used to generate the final predictions for each set of statistics. We show that our proposed class-
based ensembling method largely outperforms a simple ensembling method and multiple classical
PT algorithms. Furthermore, our method significantly outperforms three popular classical PT
algorithms and slightly outperforms TM (a SOTA classical algorithm) over the whole test set, and
it significantly outperforms TM when only analyzing videos with high-speed particles. Finally, we
find that DTS can offer significant time savings for the extraction of motion statistics compared to
classical PT algorithms as it’s measured to be around 6x faster than TM.

The work presented in the chapter is an enhanced version of the in-review article:
“Berghouse, M. & Parashar, R. DeepTrackStat: an End-to-End Deep Learning Framework for
Extraction of Motion Statistics from Videos of Particles. Engineering Applications of Artificial
Intelligence. 2024.” This chapter adds to the work currently in review by exploring connections

with chapters 2 and 3.

4.3 Data and methods

4.3.1 Simulated data
DTS was developed with the goal of extracting motion statistics from a wide range of videos of
particles. One of the challenges of this task is that there are no common benchmarks that currently
exist for the specific task of measuring particle motion extraction capabilities. Thus, we developed
a novel dataset containing a wide variety of particle tracking cases to properly test DTS. To create

a highly general model, we generated over 2000 simulations of moving particles that were used
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for training. All simulations were 40 frames long, 2000 by 2000 pixels, and 1 channel (grayscale).
The simulations differed in image and motion properties to train the model on a wide variety of
spatiotemporal conditions. Samples of the types of imagery and the distributions of motion
statistics generated from our simulations can be seen in Figure 1. The image properties we varied
were particle shape, size, density, seeding location, brightness, and signal to noise ratio (SNR). To
change the SNR of the simulations, we used varying combinations of Gaussian, speckled, and salt
and pepper noise. The motion properties we varied were particle speeds and pathlines. The
pathlines were either generated randomly (to represent Brownian motion) or from flow fields
representative of flow in porous media, straight advective flow, or Poiseuille flow. The porous
media pathlines were largely generated from flow fields of heterogeneous geometries (created
both in OpenFOAM [28] and via the Lattice Boltzman Method). A small percentage of the
simulated data represents that of the experimental microfluidic geometry used in chapter 2
(chapter 2, Fig. 1c). This type of homogeneous geometry has been used for particle tracking
studies in the fields of bacterial motility and deterministic lateral displacement [2, 29]. Likewise,
Brownian motion, and Poiseuille and heterogeneous porous media flows represent a large range
of the motion observed in the body of cell microscopy data. Thus, our image and particle motion
varieties aim to capture the most commonly encountered types of video data for both
microfluidics and general microscopy experiments. The simulated training and testing set don’t
significantly differ. Different parameters (particle speed, density, SNR, shape and seeding location)
were used to generate the testing simulations than the training simulations, but the range of
distributions of variables from the testing simulations generally falls within the range of

distributions of variables from the training simulations (Fig. 1). In an effort to display the
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robustness of DTS, the simulated test set aims to replicate most of the variation in the simulated

training set.
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Figure 1. Images and motion statistic distributions for the training, simulated test, and experimental test
data. The images are grayscale (1 channel) and are presented here as false-color images to highlight
differences in brightness. The wide variety of images (in terms of particle density, shape, size, and image
noise) illustrate the range of inputs that DTS is able to extract accurate predictions from. The blue
distribution is the mean of the respective set (training, simulated testing, experimental testing), the orange
is the mean minus one standard deviation, and the green is the mean plus one standard deviation. The grey
distributions show the full range of variability for the respective set. The distributions for the simulated and
experimental test datasets are mostly captured in the training dataset.
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The aim of DTS is to predict speed, velocity component, and turn angle distributions
directly from videos of moving particles. We chose to focus on the prediction of these motion
statistics because they are important baseline measurements to understand the advective-
diffusive transport of particles such as colloids and bacteria. However, we believe that frameworks
like DTS can be extended to other statistics, so our work also serves as a proof of concept for
researchers who may be looking for more task-relevant statistics such as dispersion coefficients or

mean square displacements. For speed, we predict the magnitude of the ensemble velocity of the

%) +(Ver1—Y)?
At

particles in pixels per frameas S = VG , Where t represents time (in frames) and

At = 1. For velocity, we predict the ensemble x and y velocity components (Vx and Vy) in pixels
per frame. For turn angle, we predict the relative change in direction of the ensemble of particles

Yt+2—Yt+1) — tan-! ()’t+1—)’t

). Low average turn
Xt+1~Xt

between two successive frames as ay = tan'l (
Xt+2~Xt+1

angle corresponds to particles that primarily move straight, and a high average turn angle
corresponds to particles that have a high probability of changing directions between frames. One
of the primary motivations behind this work lies in the results presented in chapter 3, which
indicate a general inability for current state-of-the-art (SOTA) particle tracking algorithms to
accurately high-speed particles. Thus, many of the simulations that were generated for training
and testing have max speeds greater than 200 px/frame (Fig. 1), which is about twice the speed

(in px/frame) of the fastest experimental data from chapter 2.

4.3.2 Experimental data
In addition to our simulated imagery/trajectories, we also test the performance of DTS on
experimental videos. These videos are from microfluidics experiments of motile bacteria in porous

and open media. Specifically, we use videos of Acidovorax [30], Geobacter [31], Paenibacillus [32],
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and Shewanella [33] moving through structures with varying levels of porosity (¢ = 0, ¢ = 0.42,
and ¢ = 0.6) and at varying flow rates (0, 1, and 5 ul/h). Nine out of twenty-three of these
experimental videos were also used in chapter 2 to analyze microbial motility. The other 14 videos
come from various related experiments, meaning that they also have a high degree of similarity
(in terms of image and particle motion properties) with the experimental videos from chapter 2.
Because this is an experimental dataset, there is no ground truth. Thus, we use the results from
TM as a relative ground truth to gauge the performance of DTS. The experimental videos range

from 200 to 3000 frames, and are 2048 by 2048 pixels.

4.3.3 Model development

We present a novel end-to-end framework that consists of two stages: the speed classifier
(SC) and the statistics- specific models (SSMs). Previous studies have presented similar class-based
ensemble methods for various tasks [34, 35, 36]. However, our model is novel in its combination
of architectures used, the use of a speed classifier to improve predictions of motion statistics, and
the task of extracting information from videos of moving particles. The framework splits an input
video into 40-frame chunks and averages the motion statistics predictions across all chunks,
meaning the model can process any grayscale video input with at least 40 frames. The SC uses an
ensemble of convolutional neural networks (CNNs) and vision transformers (ViTs) to classify the
input into one of five classes based on speed. All models used in the ensemble can be seen in the
publicly-available testing script, but the models that carry the most weight in the SC ensemble are
VoloD1-384 [37], Pyramid Vision Transformer V2-b1 [38], RegnetX-032 [39], and VoloD3-448 [37],
which were chosen for their high single-model performance. CNNs are well known to be able to
capture spatial features within the images of a video [40], but may have trouble learning the

temporal relationships in the data [41]. Thus, we also use ViTs, which are especially suited to learn
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features in sequences of images [42], and have shown high performance on video classification
tasks [43]. The speed classifier tries to predict ranges of mean particle speeds. Specifically, class 1
corresponds to a mean speed of 0-2 pixels/frame, class 2 is 2-5 pixels/frame, class 3 is 5-10
pixels/frame, class 4 is 10-18 pixels/frame, and class 5 corresponds to a mean particle speed of
greater than 18 pixels/frame.

The second stage of the DTS framework, the SSMs, consists of a variety of ensemble
models for each statistic and each class. The specific models used in each ensemble were
determined by their single-model performance. DTS outputs a sorted 500-length vector of
probable values for particle speeds, turn angles, and velocity components (Vx and Vy). Through
this framework, the speed classifier has a large impact on the final results, with each specific SSM
only slighlty shifting the value of the outputs. The ensemble weights for the SC and SSMs were
determined through calibration of 50% of the simulated test data. In addition to calibration, we
used simple boolean logic to improve DTS’ performance on Brownian trajectories and trajectories
that are relatively straight, but this feature has to be manually specified by the user. If the user
knows a particular video contains primarily Brownian trajectories and sets this flag, then DTS will
ensure that the output for Vx has a mean value of 0. Likewise, if the user observes that their video
contains a large majority of particles that move straight, DTS will use a different ensemble for the
turn angle distribution. Although DTS still has comparable performance to TrackMate without the
use of these special flags, their use improves results for the specific cases of Brownian and straight
particles. For all results discussed in this chapter, both flags were used to improve performance
for these trajectory types.

The speed SSM primarily consists of a 4xVoloD1-224 patch model, VoloD3-448, VoloD1-

384, and VoloD2-384. The patch model takes in a downsampled video input (448x448 pixels) and
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splits it into four 224x224 patches. Each of these patches is then fed into a VoloD1-224 model with
an output size of [B,500]. The outputs from each VoloD1-224 model are then concatenated

and fed into a fully connected layer to get the final desired output shape of 500. For all other
models, the final classification layer is simply replaced to get an output shape of 500. After each
model generates its outputs, the class-based ensemble weights are used to generate the final
model outputs. The exact models and ensemble weights used in each stage are given in
Supplementary Figure 7. All base models were constructed with the PyTorch Image Models
(TIMM) repository [44], meaning the final classification layer was changed via the "num_classes"
flag. All models used the default pre-trained weights from TIMM (model-specific, but mostly
ImageNet [45]). The turn angle, Vx, and Vy SSMs are constructed from similar ensembles, the

details of which can be viewed in the code or Supplementary Figure 7.

4.3.4 Training and testing process
We used 1923 simulations for training and 481 simulations for validation, which was used to
reduce overfitting during training via early stopping. The simulated test set contains 43 simulations
and the experimental test set contains 23 pairs of images and trajectories. For TIMM models, the
set dropout rate applies increasingly larger amounts of dropout in the transition layers of the
model, with the final transition layer having the set amount of dropout. All patch-based models
were trained with dropout of 0.3, and all other models were trained with dropout of 0.4. All
models were trained with the AdamW optimizer at a learning rate (Ir) of between 1.2e-5 and 2e-
4. The speed classifier was trained with an Ir of 2e-4, the speed SSM was trained with an Ir of 1.2e-
5, the Vy SSM was trained with an Ir of 1e-4, the Vx SSM was trained with an Ir of 1.2e-4, and the
a SSM was trained with an Ir of 6e-5. Hyperparameter tuning (dropout, learning rate, and number

of classes) was done in a two step process. We tuned the hyperparameters automatically via
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Optuna [46] for a few models for each statistic, then used the best range of learning rates to

manually test a few sets of hyperparameters for each of the other models. All speed classifier
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Figure 2: Overall framework for the proposed model (DTS). The model accepts a grayscale video as input (T
must be 40, W and H must be equal) and first send it through the speed classifier (SC), which is an ensemble
model used to classify the video of particles into 5 speed categories. The input is then sequentially sent to
statistics-specific models (SSMs), which are each individually trained for their specific prediction task. Based
on the output of the speed classifier, each SSM uses a different conditional ensemble model to generate the
predictions. The outputs of DTS are the raw 500-length vectors of values for each statistic, and the respective
distribution for each statistic.

models were trained for 400 epochs, speed prediction models were trained for 90 epochs, a

models were trained for 300 epochs, Vy models were trained for 95 epochs, and Vx models were
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trained for 150 epochs. All “224” (i.e. models that take in an input of 224x224) models were
trained with a batch size of 32, all “384” models were trained with a batch size of 16, and all 448
models were trained with a batch size of 8. All training and testing for DTS, and all PT experiments,
were performed on a CUDA-capable computer with an Nvidia 4090 GPU, Intel i9-14900KF CPU,
and 96GB of RAM.

In this chapter we compare the performance of DTS to four other algorithms (TrackMate,
Trackpy [47], TracTrac [48], and LapTrack [49]). For TrackMate, we used the Kalman filter linking
algorithm for trajectories with directed motion and the LAP linking algorithm for trajectories with
Brownian motion. Aggregate motion statistics for each classical PT algorithm (and the ground
truth) were computed by ensemble averaging methods over all trajectories and frames.
Essentially, each tracker outputs a csv of the trajectories that are sorted and looped through to
calculate ensemble statistics. Statistics for DTS are calculated as the ensemble of all outputs from
a single video.

Each model was calibrated to achieve the best results on the testing set. For TM, Trackpy,
TracTrac and LapTrack, calibration was performed through a cycle of visual and statistical analysis
to inform the adjustment of tracking parameters. For DTS, calibration entailed adjusting the class-
based ensemble weights to achieve the best possible results on 50% of the testing data. The point
of the calibration step is to simulate the scenario of using DTS to extract motion statistics from
multiple videos. Given the rigorous testing in scientific literature that classical PT algorithms have
gone through, it is reasonable to first use a classical PT framework (such as TM) to produce motion
statistics in order to verify the accuracy of DTS for a particular dataset. If there are any significant
discrepancies between DTS and TM, the ensemble weights of DTS can then be adjusted to match

TM (or any other SOTA tracking algorithm), ensuring accurate statistics for the particular data
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being analyzed. In addition to our calibrated results, we also provide uncalibrated results for DTS.
In the uncalibrated version of DTS, the ensemble weights were determined through optimizing

predictions of the validation set.

4.4 Results and discussion

4.4.1 Decreased run time
One of the primary advantages of DTS over classical PT algorithms (such as TM) is the reduced
computation time for generation of motion statistics. Particle trajectory analysis often requires
many imaging trials at high resolution, meaning the time required to extract motion statistics is an
important concern. For one of our experimental videos with dense particles that contains 2480
frames, TM takes 2.5 minutes for loading the images into ImagelJ [50], 5 minutes to perform the
detection step, 4 minutes to perform the linking step, 0.5 minutes to filter and export the
trajectories, and 0.5 minutes to calculate the statistics, which means the TM framework in total
takes 12.5 minutes to extract statistics from the video data. This is assuming that OOM errors
aren’t encountered (a 2480 frame video of 2048x2048 resolution with >1000 particles in each
frame may cause TM to crash) and that the tracking parameters used on the first try are optimal,
which is unlikely for anyone besides an expert in the field. Even for someone experienced with PT
codes, a 2480 frame video with over 1000 particles per frame will likely require 30 minutes to get
good results. In stark contrast, DTS only takes 2 minutes to make its predictions for the same video,
and requires significantly less domain knowledge to get accurate predictions of motion statistics.
Additionally, DTS always takes two minutes for a 2480 frame video of 2048x2048 resolution,

whereas the time required to generate statistics via classical PT methods significantly depends on
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the number of trajectories. For videos with very few particles, DTS may not save much time, but

for videos with a large number of particles (>1000), DTS will save a significant amount of time.

4.4.2 Ablation experiments

In order to show the benefit of our proposed model structure, we performed ablation experiments
for each statistic. We report the mean average error (MAE) plus or minus the standard deviation
of the mean value of each statistic across all simulated test data for the four best sets of single
models, a simple ensemble of the best models, a single model that outputs all four variables at
once, and our proposed class-based model (Table 1). The set of single models represent the top 4
single models for each variable. For example, MS-1 gives the results for a VoloD3-448 model used
to calculate speed, a VoloD1-384 model used to calculate Vx, a VoloD4-448 model used to
calculate Vy, and a VoloD3-448 model used to calculate a. In the 4-Var model, there are four
separate VoloD1-224 models that generate the feature maps for each variable, then these four
feature maps are concatenated and passed through a linear layer to generate the final output of
shape [B, 500, 4]. In this case, we see performance is dramatically worse than that of the set of
single models, the simple ensemble and DTS, which indicates the need to develop an ensemble of
single models.

For all statistics besides Vx, we find that the class-based model largely outperforms the
best sets of single models. Furthermore, DTS significantly (p < 0.05) outperforms a simple
ensemble of the best single models for the speed and turn angle prediction tasks. In the case of
Vx, although the MAE is greater for DTS than for model 1, other metrics (RMSE and W1) indicate
that DTS has a better overall fit to the ground truth data. Thus, we illustrate that a class-based

ensembling method can lead to significant performance increases for the task of predicting motion
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Table 1. Ablation experiments on the simulated test set (n=43 samples). Scores are reported as the MAE for
all samples in the test set plus or minus one standard deviation of the MAE between all samples of the test
set. The metrics are non-negative with a large positive skew that often results in a standard deviation greater
than the mean. For all proceeding tables, results are reported as the mean error with a 10th-90th range to
clear any potential confusion. Here we give the results for the top 4 sets of single models, a simple ensemble
of MS-1, MS-2, and MS-3, and a 4-var model that uses a single model (VoloD1-384) to predict all statistics
at once, and DTS (the proposed framework). The best performing single models for speed are VoloD3-448
(MS-1 & MS-3) and the 4xVoloD1-224 patch model (MS-2 & MS-4). For Vx the best performing models are
VoloD1-384 (MS-1), RegnetX-016 (MS-2), VoloD3-448 (MS-3), and RegnetX-032 (MS-4). For Vy the best
performing models are VoloD4-448 (MS-1), VoloD3-448 (MS-2), VoloD1-384 (MS-3) and VoloD1-224 (MS-
4). For turn angle the best performing models are VoloD3-448 (MS-1 & MS-3) and VoloD1-384 (MS-2 & MS-
4). The class-based model significantly (p < 0.05) outperforms the simple ensemble for the speed predictions
and slightly outperforms the ensemble in all other metrics.

Stat MS-1 MS-2 MS-3 MS-4 Ensemble | 4-Var Model DTS
S |37+50(42+6.1|43+6.0| 9.7+15 | 52+7.38 10+ 12 28+3.3
Vx | 57+46|58+48|6.0+55|68+6.4 | 5748 9.9+12 5.1+9.0
Vy /08+0.7(09+06|09+09|10+0.9| 0.8+0.8 6.5+7.2 0.5+0.5
a |34+29(35+27|3.7+39(39+41| 3.0+2.7 54153 25421

statistics from videos of particles. Furthermore, the class-based method contains a large number
of parameters that can be manually fine- tuned (such as the Brownian and straight motion flags,
and easily modifiable weights for the SC and SSMs), which allows for more precise calibration
depending on the range of videos that need to be analyzed.

The full DTS framework has around 2 billion (1,994,005,238) parameters. The single
models used in this study have between 8 and 200 million parameters. Using all the best single
models, the full prediction framework would have around 330 million parameters. The ensemble
framework uses 3 models for the prediction of each statistic, which gives it around 1 billion
parameters. The 4-var model is just a single VoloD1-384 model for all statistics, so this would only

have 26 million parameters. Although the 4-Var model performs significantly worse than all others,
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this framework could be advantageous for situations where rapid predictions and low

computational cost are required or preferred over accuracy.

4.4.3 Simulated test set

To ensure that DTS can handle a wide variety of simulated data, we included test simulations that
had large variations in image and trajectory properties (Fig. 1). Our results indicate that the
performance of DTS can match that of TM across this wide variety of simulations (Table 2).
Specifically, DTS significantly outperforms TM in 2 out of 3 of the speed and angle metrics.
Furthermore, DTS vastly outperforms other well-known PT methods such as Trackpy (Table 3),
TracTrac (Table 4), and Laptrack (Table 5). In addition, we tried to compare the performance of DTS
with a SOTA optical flow method [51], but determined that the model would require fine-tuning
to perform the desired task (Supplementary Figure 8).

Complementary to our calibrated results for DTS, we also present results for an
uncalibrated framework (Table 6). While the uncalibrated framework doesn’t perform as well as
the calibrated framework (Table 5), it does indicate that DTS can be used out-of-the-box to predict
motion statistics with much greater accuracy than the calibrated predictions of Trackpy (Table 2),
TracTrac (Table 3), and Laptrack (Table 4), and slightly better accuracy than the calibrated
predictions of TrackMate (Table 5). Additionally, these results show that the class-based
framework has a clear advantage over simple ensembling for speed and angle predictions (Table
1).

DTS shows especially strong performance for simulations with high particle speeds (Table
7). We define high-speed simulations as having a mean ensemble speed of greater than 25
pixels/frame. For our 12 test simulations that meet this criteria, DTS dramatically outperforms TM,

showing improvement in every metric for the speed, Vx, and turn angle statistics. Once again, the
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visually inspect the inputs before using DTS.

Table 2. Results from the simulated test set (n=43 samples) for each statistic comparing DTS and TM. The
mean of each statistic is given along with the 90th-10th percentile error range. For both frameworks, we
give the MAE, RMSE, and 1-Wasserstein distance (W1) for each statistic (relative to the ground truth).
Statistically significantly better performances are bolded.

DeepTrackStat TrackMate

Stat MAE RMSE W1 MAE RMSE W1

Speed 2.80 5.37 .026 7.41 111 .016
[.116,7.18] | [.839, 11.6] [.0005, .082] [.030, 28.0] [.610,31.8] | [.0015,.053]

Vx 5.05 8.48 .076 7.95 12.0 .087
[.047,15.7] [.828, 20.6] [.0013, .113] [.004, .342] [.712,34.2] | [.0010, .154]

Vy .547 4.63 .026 291 4.95 .021
[.012,1.27] [.609, 12.9] [.0005, .108] [.005, .846] | [.231,11.9] [.0004, .090]

a 2.51 5.41 .002 5.49 10.5 .002
[.529,5.23] | [1.57,9.63] | [.00002,.002] [.987,9.59] [3.90, 20.8] | [.00017,.004]
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speed and angle predictions stand out, with both the MAE and RMSE showing a statistically
significant improvement from TM. For traditional particle tracking methods (ie not based in deep
learning methods) such as TM, the quality of the extracted trajectories is mainly determined by
particle spacing displacement ratio (PSDR), which is the ratio of the average spacing between any
two particles and the average speed of a particle. Since TM, and most other classical PT methods,
are all roughly based on some kind of nearest neighbors approach, the lower the PSDR, the harder
it is for them to accurately track the particles. At high particle speeds, the PSDR is low, so TM is
unable to extract accurate trajectories. DTS, since it is not based on any kind of nearest neighbors
algorithm and does not actually perform tracking, doesn’t suffer from this issue. For speed, The
MAE for DTS is about 5x less than that of TM, showing that DTS has a clear application for
improving the accuracy of speed predictions for videos of high-speed particles.

In addition to our numerical performance comparison of DTS and TM, we also present a
graphical performance comparison of the distributions of the simulated and experimental test
sets (Fig. 4) for each statistic. The distributions obtained from the simulated test sets (Figs. 4a, 4b,
4c, and 4d) show that, on average, the distribution shapes obtained from DTS closely resemble
the ground truth trajectories. Furthermore, for Vx, although the fit between distributions (as
measured by W1) is essentially equal for TM and DTS (Table 2), the predictions by DTS are much
more accurate for the high-speed simulations (Table 7). In addition, when looking at the
distribution for all data, the predictions from DTS show much better alignment with the ground
truth than TM does for the Vx statistic. This importantly shows that DTS has an equal chance of
correctly predicting the true Vx distribution for individual videos, but a higher chance of predicting

the true Vx distribution for a group of videos.
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Table 3. Results from the simulated test set (n=43 samples) for each statistic for Trackpy. The mean of each

statistic is given along with the 90th-10th percentile error range. The performance of Trackpy is considerably
worse than that of DTS or TM.

Stat

MAE

RMSE

w1

S

8.44 [.306, 26.0]

10.8 [.508, 30.4]

.038 [.0008, .142]

Vx

8.87[.392, 27.2]

11.6 [.662, 32.9]

.032[.0015, .049]

Vy

3.42[.174, 13.5]

4.87 [.364, 16.9]

.037[.0002, .172]

8.42 [1.06, 20.4]

13.2[1.77, 28.8]

.003 [.0002, .005]

Table 4. Results from the simulated test set (n=43 samples) for each statistic for TracTrac. The mean of each

statistic is given along with the 90th-10th percentile error range. TracTrac is the lowest-performing PT

method that was tested in this study.

Stat

MAE

RMSE

Wi

S

12.0 [.029, 32.2]

14.2 [.068, 32.9]

.032[.0017, .046]

Vx

12.8 [.045, 39.9]

14.8[.156, 45.2]

.026 [.0022, .031]

Vy

4.06 [.023, 13.0]

5.32[.179, 16.4]

.032[.0015, .075]

14.5 [.548, 42.3]

14.5 [.548, 42.3]

.002 [.00007, .006]

Table 5. Results from the simulated test set (n=43 samples) for each statistic for Laptrack. The mean of each

statistic is given along with the 90th-10th percentile error range. The performance of Laptrack is

considerably worse than that of DTS or TM.

Stat

MAE

RMSE

w1

S

8.14 [.533, 22.3]

11.1[1.33, 25.7]

.035 [.0006, .085]

Vx

8.69 [.584, 22.7]

12.5[3.20, 29.6]

.032[.0015, .063]

Vy

3.63 [.500, 10.4]

6.29 [1.19, 13.3]

.041 [.0006, .171]

10.4 [.964, 20.1]

15.5[2.23, 29.0]

.003 [.0002, .005]
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Table 6. Uncalibrated results from the simulated test set (n=43 samples) for each statistic for DTS. For these
results, the ensemble weights and chosen models for DTS were determined via performance on the
validation set, meaning these represent the general performance capabilities of DTS for completely unseen
data. While the results aren’t as strong as the calibrated ones, the errors in speed and angle prediction are
still less than any other method tested in this chapter.

Stat MAE RMSE w1

S | 3.231.25,7.71 | 5.321[.30,12.1] | .021[.00046, .039]

Vx | 5.20[.03,20.2] | 8.62[.91, 22.4] | .026 [.00104, .077]

Vy | .627[.03,1.8] | 4.25[.39,10.4] | .025 [.00153,.081]

a | 2.58[.53,5.2] |5.35[1.3,9.81] | .002[.00002, .002]

4.4.4 Experimental test set

The results from the experimental test set (Table 8) further indicate DTS’ ability to accurately
extract motion statistics from videos of moving particles. DTS shows strong alignment with TM for
all statistics. The values are close enough that, given DTS’ strong performance on simulated test
set, it’s unclear which distributions are more accurate. For example, the high speeds predicted by
TM (Fig. 4e), such as up to 1000 pixels/frame, are highly unlikely for a video of bacteria in porous
media flows at 2048x2048 resolution. This would mean that a particle could move across the
camera’s field of view in only two frames, which is not possible for the max flow speed (up to
800unv/s), frame rate (10 FPS), image magnification (0.325 px/um) of our specific experiments.

A quick calculation shows the max speed a particle should be able to achieve in pixels/frame is
about 246, meaning that DTS’ estimate of a max speed of about 350 pixels/frame is in all likelihood

more accurate than TM'’s estimate of 1000 pixels/frame. For the turn angle statistic derived from
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Table 7. Average results from a high-speed subset (n=12 samples) of the simulated test data. Statistically
significantly better performances are bolded. In the case of high-speed PT data, DTS performs better than

TM in every metric.

DeepTrackStat TrackMate

Stat MAE RMSE W1 MAE RMSE w1

Speed 4.33 7.93 .002 22.8 27.5 .004

[1.25,9.35] | [2.21,15.5] | [.0003,.003] | [2.36,46.4] | [9.31,51.9] | [.002,.006]

Vx 12.9 18.6 .050 24.7 28.9 .146

[.718,35.6] | [7.31,43.4] | [.0060,.027] | [2.40,51.9] | [8.58,56.4] | [.0540,.161]

Vy .882 8.70 .004 775 9.51 .003

[.249,1.38] | [3.06,16.3] | [.0003,.004] | [.190,1.41] | [3.46,17.2] | [.0004,.009]

a 2.85 5.03 .002 5.60 13.5 .003

[.400, 5.36] | [1.24,7.88] | [.00005,.002] | [2.71,7.68] | [5.35,20.2] | [.0006,.002]
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Figure 4: Distribution comparisons for simulated (a-d) and experimental (e-h) test sets for speed (a & e),
turn angle (b & f), Vx (c & g), and Vy (d & h). For the simulated test set, we compare DTS and TM to the
ground truth. For the experimental test set, we only compare DTS with TM, since there is no ground truth.
Each distribution is obtained from a concatenated list of all values (from each individual simulation) for the

respective statistic.
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Table 8. Average results from the experimental test set (n=23 samples) for each statistic. Since there is no
ground truth data for the experimental data, errors for DTS are calculated relative to TM.

Stat MAE RMSE w1

S |1.98[.312,4.19] | 5.36[2.17,11.8] | .026[.006, .053]

Vx | 1.26[.072,2.11] | 2.29[.757,4.38] | .026 [.0056, .058]

Vy | .298[.008, .793] | 1.89[.407,2.95] | .033[.002, .073]

a |7.05[.724,14.1] | 10.8 [4.12,17.1] | .001 [.00006, .002]

the average experimental tracks, DTS and TM have nearly identical exponential distributions (Fig.
4f). The Vx (Fig. 4g) and Vy distributions (Fig. 4h) show DTS accurately matches the mean of the
TM output, but has a more narrow distribution.

To further explore the use of DTS on experimental data, we compare the turn angle
distributions extracted via DTS with the turn angle distributions calculated from the PT-derived
trajectories for videos of Geobacter and Paenibacillus in a ¢ = 0.42 geometry for Q =1 uL/h and
Q=5 uL/h (Fig. 5). These videos represent samples of the videos used in chapter 2 to investigate
microbial transport at varying flow rates for bacterial of different motility types. Recalling the
information from chapter 2 of this dissertation, Geobacter have twitching motility, whereas
Paenibacillus have peritrichous flagella. For these tests, we recalibrated DTS by optimizing the
class-based ensemble for performance on a separate set of videos for Geobacter and Paenibacillus
at Q=1 uL/h.

For the videos of Geobacter transport at Q = 5 uL/h and Paenibacillus transport at Q = 1
uL/h, we see a degree of agreement between DTS and TM. For Geobacter at Q = 1 ulL/h, DTS
predicts a smaller amount of turning (i.e., lower mean turn angle) than TM does, although the

predictions are within the same ballpark relative to the other bacteria/flow rate combinations. For

166



Paenibacillus at Q = 5 ulL/h, DTS predicts a larger amount of turning than TM does. This
combination of over and underprediction by DTS results in slightly different conclusions than if
one were to use TM. As discussed in chapter 2, a turn angle more closely centered around O (lower
absolute mean) implies straight trajectories, which are more likely to occur with the twitching

species due to their motility being dominated by advection. We observe these trends looking at

Turn Angle Distributions for Geobacter and Paenibacillus

—-= DeepTrackStat
—-= TrackMate

Probability Density

0.02 4

0.01

0 2 4 6 8 10 12 14
Turn Angle (degrees)

Figure 5. Turn angle distributions for Geobacter and Paenibacillus at Q = 5 uL/h and Q = 5 uL/h for DTS and
TM. These distributions represent a subset of the results presented in chapter 2 to investigate bacterial
transport in porous media. The results from DTS generally lead to the same conclusions about transport as
the results from TM do.

the results for either DTS or TM, although DTS implies an even greater difference in the turn angles
between species than TM does. Furthermore, the results from DTS indicate that there is less
difference between the turn angles of the same species at different flow rates. Ultimately, because
neither DTS or TM represent the ground truth, we can’t comment on which method is more
accurate for the experimental data. However, given the similarities of the conclusions, and the fact

that there is no theoretical reason Paenibacillus should make less turns at Q = 5 uL/h than
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Geobacter at Q = 1 uL/h, we posit that DTS, especially when calibrated, is accurate enough to
replace particle tracking for the determination of turn angle distributions from experimental

videos of bacteria in microfluidics.

4.5 Conclusions
We show that our proposed model, DeepTrackStat, achieves SOTA performance at comparatively
rapid speeds for the general task of predicting speed, Vx, Vy, and turn angle distributions for a
wide variety of particle tracking situations. Specifically, our model is capable of predicting these
motion statistics for a large range of particle, image, and trajectory types (dispersive, Brownian,
Poiseuille) about 6 times faster than via classical particle tracking algorithms. Through ablation
experiments we show that our novel class-based ensembling method outperforms a simple
ensembling method. We then show that DTS outperforms all classical PT algorithms used in this
study for the prediction of motion statistics for our simulated test set, and we confirm the
applicability of our models to real-world data by showing that the average outputs of DTS are
comparable to the average outputs produced through TM. Furthermore, we show that the insights
gained from analysis of turn angle distributions extracted by DTS are similar to those gained from
the analysis of turn angle distributions extracted by TM. In addition, we highlight DTS’ strong
performance for the specific task of predicting statistics from videos of particles moving at high
speeds. In this case, the performance of DTS greatly exceeds that of TM (the top-performing
classical algorithm). Thus, we present a novel method for extraction of motion statistics and apply
it to videos of particles. Although our models are specifically trained for the task of extracting

statistics from videos of moving particles, our class-based ensembling framework can theoretically
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be extended to extract motion statistics of any set of objects where the speed of the object is
significantly correlated with the other motion statistics to be predicted.

Although we have shown the robust performance of DTS across a wide variety of image
and motion types, there are many limitations present in this chapter that primarily revolve around
scope. First and foremost, we recognize that a more rigorous study would include more simulated
and experimental test sets. In addition, for most of the results DTS was calibrated on 50% of the
simulated test data, so for particles with motion statistics that greatly fall outside of the training
or calibration range, it is unlikely that DTS will perform well. This can be seen in the case of the
straight trajectories (Fig. 3) - although DTS was trained on trajectories of similar types, straight-
trajectory simulations made up a small percentage the entire training set. Thus, without the
addition of a manually set flag to indicate that the particles are moving straight, DTS is not able to
make accurate turn angle predictions. Another primary limitation of our work is that we have only
compared DTS to classical PT algorithms. A more robust study might use fine tuning of SOTA object
tracking algorithms to more effectively combine the domains of particle tracking and object
tracking and determine more optimal network architectures. Finally, our work is limited in that it
can only be used to predict four motion statistics. Rigorous transport studies often need more
statistical evidence to make insightful claims, so our work could be improved by increasing the
number of statistics DTS can accurately predict.

We hope that DTS is of practical use to researchers interested in applications of particle

tracking. We have supplied the model weights at https://zenodo.org/records/11245477, and all

data and scripts needed for training and testing can be found at

https://github.com/mberghouse/DeepTrackStat. Furthermore, our training data represents one

of the most comprehensive sets ground-truth particle tracking data publicly available on the
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internet, and we believe researchers will find it useful for the development of even more robust
applications related to PT. Thus, we hope that our work generally sparks interest within the
research community about applications of computer vision for particle tracking and motion
statistics predictions. Neither of these are solved problems yet, and improving these tasks can

greatly improve research capabilities in the wide variety of fields that make use of them.
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Chapter 5: Investigation of Feedback Cycles and the Impacts of Speed-
Based Biomass Decay on Biomass Growth and Chromium Reduction in
the Hyporheic Zone

5.1 Abstract

Within the hyporheic zone, a complex interplay of abiotic processes dictates the growth conditions
of biomass. Given the hyporheic zone’s potential role to bioremediate contaminants through
biotic and abiotic reduction, decoding these growth determinants has broader ecological
significance. In this study, we present a Monte-Carlo-style exploration into how varied initial
conditions influence biomass growth and reduction of heavy metals using chromium as an
example. Our modeling approach simulates a two-dimensional, meter scale cross-section of the
hyporheic zone, integrating heterogeneous permeabilities and accurate hyporheic flux, and
modeling chromium reduction through Monod kinetics.

To effectively capture bioclogging dynamics and soil respiration, we’ve enhanced the
reactive transport model, PFLOTRAN. Our expanded model accounts for biomass decay influenced
by fluid speed, and the dependency of biomass growth on temperature. We examine the speed-
based biomass decay function by providing a sensitivity analysis of the impact of different
parameter values on biomass growth and chromium reduction. Additionally, we conduct a large
number of simulations to offer holistic insights into microbial growth dynamics through mean
trend analysis, mean spatial distribution analysis, sensitivity analysis, PCA and clustering, and
correlation heatmaps. This analysis reveals several insights into the feedback cycles and trends of
biomass growth in the hyporheic zone under varying hydro-biogeochemical settings and shows
that while abiotic reduction is generally more dominant than biotic reduction, high biomass
concentrations give rise to reduction hotspots. While abiotic reduction largely determines the

temporal distribution of average chromium concentrations in the domain, biotic reduction
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controls the average spatial distribution of chromium in the domain. In summary, this chapter
contains a theoretical model for biomass growth in saturated porous environments, a working
version of our biomass growth model in PFLOTRAN, and analysis of the feedback cycles and

variable relationships produced through 2D hyporheic zone simulations.

5.2 Introduction

Historically, studies in the hyporheic zone (HZ) have revolved around understanding flow dynamics
[1, 2, 3], nutrient flux [4, 5, 6], and biofilm growth [7, 8, 9, 10]. Most of the current research on
biomass growth in the HZ relates to the ecological significance of microbial communities [11, 12,
13, 14], but recent research has also illuminated the impact of biofilms on physical hydrologic
properties such as permeability and local flow speed [9, 10, 15, 16]. Specifically, the emergence of
biofilms, which causes a decrease in permeability known as bioclogging, has been recognized as a
significant factor affecting water flow and solute transport [7, 17, 18]. Furthermore, the properties
of biofilms such as strength, density and stickiness (adhesion and cohesion), and variations in the
geometry of the porous media such as grain shape, impact the relative changes in permeability
[17]. The degree of bioclogging is also dependent on flow speed. As speed increases, the increased
fluid shear causes a breakup of the biofilm which represents a local decrease in biomass
concentration.

Biomass growth in the HZ can be understood as a complex feedback loop dependent on a
myriad of individual phenomena. Flow, as an initial causal variable in most cases, acts as the
foundation for this feedback loop. It instigates a flux of temperatures and nutrient concentrations
within the hyporheic zone. This flux, in turn, triggers changes in biomass concentrations. Generally,

higher nutrient levels and increased temperatures tend to promote growth [19, 20, 21, 22].
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However, the relationship between temperature and biomass is somewhat nuanced. For instance,
an uptick in temperature leads to reduced water viscosity, which subsequently results in increased
flow speeds. Increased fluid speed may bring in nutrient-rich or nutrient-poor water, resulting in
changes to the biomass growth within the domain. Furthermore, high shear rates caused by
increased fluid speed can result in the breaking apart and subsequent transport of biomass.
However, the coupling of these multiple phenomena in Darcy-scale remediation simulations has
not yet been investigated, meaning the exact impact of temperature and other abiotic factors on
biomass growth in the HZ is not fully understood.

Biomass growth can also influence a soil’s permeability [23, 24]. As biofilms become
denser, they lead to bioclogging, reducing soil permeability. This impedes the nutrient dispersion
across the HZ, subsequently slowing down biomass growth. This dynamic between biomass and
permeability creates a negative feedback loop within the overarching feedback mechanisms. More
biomass leads to reduced permeability, which in turn diminishes biomass growth. Many studies
have investigated how bioclogging alters permeability [51-53], but few studies have simulated the
impacts of permeability on biomass growth [54]. Furthermore, bioclogging simulations are often
done in the context of homogeneous permeability simulations, meaning the impacts of soil
heterogeneity on bioclogging and biomass growth are not well understood.

Reactive transport (RT) simulators [25, 26, 27] have emerged as powerful tools that allow
for investigation and prediction of phenomena within the hyporheic zone [28, 29, 30, 31]. Field
and lab studies are often resource-intensive and require a large amount of time. Although not able
to capture the same novelty and richness of information available from in-situ measurements, RT
simulations offer a highly analytical viewpoint of known physical and chemical phenomena that

can be accurately described through systems of equations. RT simulators are constantly being
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updated to include newly understood interactions. However, given their vast complexities, it is
inevitable that there will always be new relevant models that have yet to be applied to RT
simulators, such as the speed-based decay of biofilms.

In this chapter, we aim to provide two major contributions. First, we seek to further our
understanding of the hyporheic zone by investigating the complex relationships governing
biomass growth for a variety of input conditions. Furthermore, we highlight the nuanced
relationships between abiotic reduction and bacterial proliferation and highlight how these
relationships impact heavy meatal reduction (using chromium as an example) in the hyporheic
zone. Second, we seek to improve the representation of microbial physics in reactive transport
simulations by adding temperature-based biomass growth and speed-based biomass decay to
PFLOTRAN, a popular reactive transport simulator. To illustrate the impacts of our augmentations,
we highlight the sensitivity of temperature-based biomass growth and the sensitivity of speed-

based biomass decay in terms of the overall biomass growth and the reduction of chromium.

5.3 Methods

5.3.1 Description of RT Simulations
5.3.1.1 Description of Chrotran
Our simulations are built upon PFLOTRAN [26], a sophisticated multi-physics reactive transport
simulator developed collaboratively by multiple national laboratories. Specifically, we have
adapted the Chrotran [32] version of PFLOTRAN to create a high-complexity simulation of biomass
growth in the hyporheic zone at the Darcy scale. Chrotran models the dynamics of five key species:
a heavy metal contaminant (in our case, Cr(VI)), an electron donor, biomass, a non-toxic

conservative bio-inhibitor, and a biocide. It incorporates both direct abiotic reduction through
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donor-metal interaction and biotic reduction driven by donor-induced biomass growth. Chrotran
uses Monod kinetics to define biomass growth as a function of electron donor concentration, with
additional factors accounting for biomass crowding, inhibition, and decay. We chose to make the
input concentrations of bio-inhibitor and biocide low to simplify the analysis of our simulations.
Chrotran also includes crucial processes such as donor sorption (through a mobile-immobile mass
transfer system), bio-fouling, and biomass death. Furthermore, Chrotran allows for bioclogging
modeling by dynamically updating porosity and hydraulic conductivity based on biomass
concentration. The software can handle heterogeneous flow fields and arbitrarily many chemical
species and amendment injection points, featuring full coupling between flow and reactive
transport. For a comprehensive description of Chrotran’s capabilities and mathematical
formulation, please refer to Hansen et. al [32].

5.3.1.2 Speed-Based Biomass Decay

We made certain modifications to the published version of Chrotran by adjusting its parameters.
Specifically, we calibrated biomass growth rates to align with the limited data available on biomass
growth in the hyporheic zone [33, 34, 35]. Additionally, we adjusted steady-state concentrations
to be broadly representative of those found in wetland environments [36].

The original Chrotran model (Equation 1) defines biomass decay using a simple linear
function that only depends on a natural decay factor (4, ) and the difference between the biomass
concentration (B) and a minimum biomass threshold (Bo).

(1) Ap = 215,(B — Bo)
However, recent research suggests that biomass decay can also be influenced by shear stress [17].
Specifically, it has bee shown that the thickness of biofilms has an inverse logarithmic relationship

with shear stress. In our study, we consider biofilm and biomass to be interchangeable. At high
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flow speeds, significant shear stresses can form potentially dislodging and transporting biofilms
and bacterial deposits. While ideally, we would incorporate shear stress values directly into
Chrotran’s biomass decay function, PFLOTRAN lacks the capability to calculate these stresses. As
an alternative, we developed a function that calculates cell-specific biomass decay based on cell-

specific Darcy velocity magnitude and biomass concentration (Equation 2). The decay rate 4 is

ol

. L . mol L. . . m3
g Since B is given in puey and v is given in m/hr, § must have units ofﬁ and

given in units of —
m

a must have units of m/h. The units of the natural decay factor, Ap,, depend on B(B — By). For
example, if B(B — By) = 1, then Ap, must have units of r;—il . This contrasts with the original

biomass decay equation for Chrotran, where A, has units of t1. Thus, in our interpretation of
biomass decay, the natural decay parameter can be considered a function of any environmental
factors not represented by a and £.

(2) Ay = Ag,(v — ) BB

For the main parameters of the equations (B, a, A,), we provide a sensitivity analysis with B = 1
mol/m?, A, = 1.8x 107> m3/mol, and By =1x 107!° mol/m® for v in the range of
[1x 1078, 100] m/hr (Fig. 1). The sensitivity analysis of Ap, shows that the natural decay
parameter simply increases the amount of decay for all valid velocity magnitudes (greater than
a). The sensitivity analysis for § shows that low values of f§ correspond to a relatively low slope
(i.e. small increase in decay as speed increases) but relatively high values of decay at low speeds
(Fig. 4b). We interpret the  parameter to represent the mechanics of the biofilm decay based on
factors such as adhesive and cohesive forces. In general, bacterial adhesion to surfaces (such as
soil grains) is weaker than cell-to-cell cohesion in mature biofilms. This is because initial
attachment to surfaces (adhesion) relies primarily on Van der Waals forces, electrostatic

interactions, and specific molecular interactions between bacterial surface proteins and the
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substrate. On the other hand, cell-to-cell cohesion in biofilms involves production of extracellular
polymeric substances (EPS) that form a strong matrix, multiple types of chemical bonds between
cells, physical entanglement of cells and matrix components, and the development of specialized
structures for cell-cell attachment. The stronger cohesive forces in biofilms explain why mature
biofilms often detach as whole chunks (i.e., sloughing) rather than individual cells when exposed
to shear forces. The bacteria essentially create their own reinforced "community structure" that's
more robust than their initial surface attachment.

The case of low 8 describes an immature biofilm in which the individual bacteria are
unable to rapidly colonize surfaces and have weak adhesive forces that cause detachment at low
flow speeds. As speed increases, the decay also increases due to this weak adhesion which results
in sloughing. The case of high § describes a mature biofilm that has stronger adhesive forces at
low flow speed (since most of the shear force impacts the outer walls of the biofilm), but weak
adhesive and cohesive forces at high speed. In this case, the mature biofilm is thicker, and high
shear stresses may lead to sloughing events, thus causing a larger increase in biomass decay
(relative to the case of low ). While these phenomena may accurately describe situations for
specific biofilms, we recognize that a more robust and flexible version of this parameter would
also allow for changes in the slope (i.e., different values of ) for different values of velocity, since
there are a variety of valid decay-speed slopes depending on the physiochemical characteristics
of the biofilm and the environmental conditions. However, when we attempted to make the
exponent term a function of velocity as well, the simulations in PFLOTRAN became divergent.

The sensitivity analysis for a@ shows it has the least impact on biomass decay of the three
fitting parameters. Physically, @ can be thought of as representing the threshold fluid speeds

required to initiate shearing at the periphery of the biofilm. For our implementation in PFLOTRAN,
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we use a conditional statement that returns the value of (v — ) if v > «, else we return 10"%in
place of (v — a). The underlying premise of our biomass decay equation is that initial scouring
establishes a steady-state biomass concentration at a given flow velocity. Subsequent increases in
flow velocity lead to enhanced scouring, attributed to both the elevated flow speed and the
formation of preferential flow channels within the biofilm matrix. We calibrated the fitting
parameters a and 8 through a comparative sensitivity analysis with published research on biofilm
thickness as a function of shear stress [17]. It is well-established that the distribution of micro and

pore-scale

Sensitivity of B, Sensitivity of B Sensitivity of a

1
)

Biomass Decay (mol x m~ x hr™?)

Biomass Decay (mol x m~3 x hr~1)
Biomass Decay (mol x m~? x hr

1076 10 1072 10° 107 1076 1074 102 10° 107 1077 10°% 1077 107} 10!
Speed (m/hr) Speed (m/hr) Speed (m/hr)

Figure 1: Sensitivity analysis of parameters in the augmented biomass decay equation for a biomass
concentration of 1 mol/m3. (a) Sensitivity of the /132 parameter. Higher values of /132 resultin a larger amount
of initial decay for speed>1e-4, but don’t impact the long-term slope of the relationship between speed and
decay. (b) Sensitivity of the 5 parameter. Higher values of 8 result in a smaller amount of initial decay but a
greater slope. (c) Sensitivity of the a parameter. Higher values of a result in a greater increase in initial
decay, but the speed required to produce the initial decay is greater.

velocities can diverge significantly from Darcy-scale velocities [37]. Given that biofilms primarily
develop within pore spaces, they are subject to pore-scale velocity variations, resulting in higher
shear stresses on the biofilms compared to Darcy-scale calculations. To address this scale
discrepancy, we employed OpenFOAM [38, 39] to simulate two homogeneous porous geometries,
each measuring 665 um by 665 um, with a porosity of 25% but differing in pore length and grain
diameter (Fig. 2). Both simulations revealed an approximate order of magnitude difference

between mean and maximum shear stresses. Consequently, we applied a pore-scale correction
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factor of 10, as described in the caption of Figure 2, to adjust the shear stresses derived from

PFLOTRAN's Darcy-scale simulations.

Figure 2: Shear stress fields derived from OpenFoam simulations of a 25% porosity geometry with a grain
diameter of 20 um and 40 um. The D = 20 um simulation has a mean shear stress of 1.27e” and a max shear
stress of 7.89e”. The D = 40 um simulation has a mean shear stress of 2.71e” and a max shear stress of
1.86e. The ratio of max to mean shear stress increases as grain diameter increases (6.21 to 6.86), indicating
that a pore scale correction factor of 10 is reasonable for our simulations, where average grain diameters
may theoretically range from less than 1 um (clay) to 100 mm (gravel).

In our shear stress calculations from PFLOTRAN, we opted to use the maximum shear
stress rather than the average. This decision is justified by the sparse spatial distribution of
significant shear stresses, which primarily occur at interfaces between units of differing
permeability where large velocity gradients exist (Fig. 3). While our Gaussian permeability fields
contain few sharp discontinuities, real soil systems typically exhibit high heterogeneity at the pore
scale, suggesting that our simulated shear stress fields are likely more uniform than the stress
fields in real soil systems. Therefore, we posit that the maximum shear stress serves as a
reasonable proxy for the true mean shear stress in more heterogeneous systems.

To validate our approach, we created three baseline simulations and calculated their shear
stresses using the aforementioned methodology. We then correlated these values with those
presented in Figure 5 of [17], computing the percentage difference in biomass concentrations for
each increment in shear stress (Fig. 4). These percentage differences were compared to the

corresponding changes in biomass thickness reported in the literature, allowing for a final
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calibration. This comprehensive calibration process yielded optimal values of § = 0.8 and a =
2x1077. This rigorous approach to parameterization, incorporating both theoretical
considerations and empirical data, enhances the robustness and applicability of our biomass decay

model across various hydrodynamic conditions in the hyporheic zone.
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Figure 3. Average shear stress field for the high-speed calibration simulation. High shear values (573 to

5.4e72), indicated by red color, occur due to sharp transitions in permeability and high velocity magnitude.
The top right section of the domain contains preferential channels with high local velocities. When these
high velocities encounter low-permeability transitions, their directions change and velocities significantly

200

reduce, resulting in large velocity gradients (and thereby shear magnitudes). Areas of the spatial domain
with lower velocity or less transitions between high and low permeability, which comprise the majority of
the total area, generally have shear values of 1e~5 to 6e~*.

In addition to our augmentation of the biomass decay equation, we also altered the
standard Chrotran biomass growth function to be a function of temperature. Numerous studies
have shown that microbial growth generally increases with increasing temperature [40-43], and
that this dependence may be modeled by the Ratkowski function [44]. The standard
implementation of the Ratkowski function was difficult to implement in PFLOTRAN, so we use a
sixth degree polynomial that accurately represents the Ratkowski function from 1 to 30 °C.

Specifically, we parameterized the Ratkowski function as
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(3) g, =PiT®+P,T° + P3T* + P,T® + PsT? + PsT + P,

where P1 = -2.9x107°, P2 = 2.3x107, P3 = -6.5x107°, P4 = 6x10™°, P5 = 1.4 x 10 P6 = 2.4 x 1072,
and P7 = 0.196. Accurate in-situ temperature time series were given for each of the in-situ
hyporheic flux time series’ that we chose to simulate (gaining, high gaining, losing, high losing, and
Hanford), which allowed use to make use of this temperature-based growth equation in the
context of realistic temperature fluctuations. Plugging equations (2) and (3) into the original

Chrotran biomass growth equation gives

@) o= Aphp, B2 (L) 2,

Kp+D \Kp+B
where u; is the biomass growth rate, Az is a growth rate parameter, D is the electron donor
concentration, Kp is the half-saturation constant for the electron donor, Kz is a Monod constant,

and a, is the crowding parameter.

140 Biomass Over Time for Simulations With Different Maximum Shear Stresses
I |

——o=.012Pa
120 H—0=.024 Pa
o =.054 Pa

| |
0 50 100 150
Time (days)

Figure 4. Biomass time series for a low-speed (blue), medium-speed (orange), and high speed (yellow)

simulation. The legend gives the maximum shear for each simulation. With the pore-scale to darcy-scale
correction of 10, we get max shear values of .054, .024, and .012. From the micro-scale experiments of
shear-based biofilm breakup [17], these shear values correspond to biofilm thicknesses (after a 14 hour
growth period) of 18, 25 and 31, or a 19% decrease in thickness going from ¢ = .012 Pa to ¢ = .024 Pa and
and 28% decrease in thickness going from o = .024 Pa to o = .054 Pa. Our steady-state biomass
concentrations show similar percentage differences (22% and 29%), indicating a relatively accurate
calibration of our speed-based biomass decay.
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5.3.1.3 Permeability and Flow

Studies have shown that biomass growth in the hyporheic zone is strongly linked to the hyporheic
flux [9, 7, 45, 46]. Depending on the concentration of nutrients and the flow speed of the
groundwater and surface water flows, a positive or negative flux can have different impacts on
growth. To gain deeper insight into how exactly these differences affect biomass growth, we

simulated the hyporheic zone under a variety of realistic flow conditions (Fig. 5a).
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Figure 5: Time-series of pressure boundary condition groups used in the simulations. For each group, slight
variations to the time-series were introduced to develop a much wider variety of potential flow conditions
for the simulations.

The gaining and losing flow conditions at high speed represent the largest hyporheic fluxes
we were able to find in the literature [35], and the low-speed gaining and losing conditions
represent much smaller fluxes. In addition, we use hydrographs that come from hyporheic flux
data measured at the Hanford site [34]. Thus, we examine feedback cycles and statistical
relationships in the hyporheic zone from a general perspective that can be considered the average
of a variety of previously published data. Furthermore, although it is unclear how much each base
time series hydrograph influences our overall analysis, the results we present are indirectly
relevant to chromium bioremediation simulations of the Hanford site.

In addition to the general direction and magnitude of flow, permeability has a significant

influence on the general transport of nutrients and biomass within the hyporheic zone. At low
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permeabilities, biomass and nutrients are less able to disperse throughout the hyporheic zone, so
average biomass concentrations over a large area will be less. However, hotspots of high biomass
concentration may still form in low permeability zones, which may also result in bioclogging. To
understand how exactly biomass growth is impacted by a variety of permeabilities, we created a
variety of heterogeneous permeability fields with different covariance ratios (Fig. 6). Although the
mean permeability was similar for most simulations (around 2e° m?), the effective permeability
(Keff) would change based on the covariance ratio. Furthermore, we also ran simulations at
extremely low permeability to understand biomass growth in a significantly different
environment.

5.3.1.4 Boundary Conditions

We model a segment of the hyporheic zone as a vertical slice measuring 1 meter in height and 2
meters in length. This slice represents the interface between groundwater and surface water, with
the top and bottom boundaries corresponding to surface flow and groundwater respectively. The

left and right boundaries extend the hyporheic zone longitudinally along the direction of river or
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Figure 6. Sample heterogeneous permeability distributions (at t=0) used in simulations featured
in this study. This figure is also featured in some of our unpublished work on upscaling the
simulations discussed in this study.
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groundwater flow. Flow conditions at the top and bottom are controlled by Dirichlet boundaries,
with pressure differentials set according to the simulation type: gaining, losing, or Hanford. The
lateral boundaries allow for bidirectional flow, regulated by a Dirichlet pressure boundary of zero
on one side and a constant value on the other side. Transport boundary conditions mirror those
used for flow. The transport boundary conditions for each chemical species were varied over our
multitude of simulations, but the groundwater (transport from bottom into the domain) generally
contained higher concentrations of nutrients and chromium than the surface water.

A variety of scales were used for the simulations in our study. For our analysis of feedback
cycles and general relationships observed in our simulations, we created simulations that were
1x2 meters, 1x4 meters, and 1x20 meters that all had a dx and dy of 0.01 meters. For our sensitivity
analysis of the impacts of our velocity-based biomass decay on biomass growth and chromium
reduction, we created simulations that were 1x2 meters and had a dx and dy of 0.005 meters.
Scale is not a main point of the analysis presented in this chapter, and the simulations of multiple
scales were primarily generated for the purpose of training the deep-learning-based upscaling
model presented in chapter 6 of this dissertation. However, our inclusion of simulations at multiple
scales in this chapter does act to add to the overall variability between simulations, resulting in a

more general and scale-agnostic analysis of biomass growth in the hyporheic zone.

5.3.1.5 Simulation Variables
The variables (also referred to in this work as features) of the simulations, as well as their range of
possible values, are given in Table 1. All of the features that depend on the time-evolution of the

simulation, such as biomass, chemistry, and flow speed, are referred to as the “physio-chemical
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Table 1. Description of physio-chemical features and their ranges of possible values used in the simulations.

B: biomass, ED: electron donor (molasses), Cr(VI): chromium, V,: horizontal velocity, V: vertical velocity, P:

pressure, T: temperature, ¢: porosity, k: permeability.

B ED Cr(VI) v, Vy
Var (mol/m3) | (mol/L) | (mol/L) | (m/hr) | (m/hr) | P(Pa) | T(°C) ¢ K (m?)
Min 1le-10 le-20 1le-20 -632 -486 -1214 4.8 le-4 | 1le-15
Max 768 5.5e-3 7.6e-3 671 651 7099 25 0.6 le-9
Mean 58 8.1e-6 1.4e-5 -5.8e-2 | -1.4e-2 786 115 | 0.13 | 2e-10

features.” The variables that are prescribed at the beginning of the simulation and don’t change

value over time are referred to as “input variables”.

5.3.2 Sensitivity Analysis

One of the primary goals of this study is to gain deeper insight on the abiotic controls of biomass

growth in the hyporheic zone. To this extent, we employ a variety of sensitivity and correlation

analyses to understand how different features may impact growth. We use classical sensitivity

analysis, changing one feature and keeping all others equal, to determine the individual impacts

that each feature may have on biomass growth. Furthermore, we use a Monte-Carlo-type

sensitivity analysis to understand feature relationships at a more global level. Specifically, we ran

344 simulations of the hyporheic zone, each under slightly different input conditions, then used

PCA and cluster analysis to understand physio-chemical feature relationships and groupings. In

addition, we used a correlation heatmap to identify correlations between all the simulation

features (both physio-chemical features and input variables).

5.4 Results

5.4.1 Feedbacks and Mechanisms of Biomass Growth

The primary known physio-chemical features that impact biomass growth at scale, as well as their
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Figure 7. Known feedback cycles from physical features present in simulations of biomass growth in the
hyporheic zone. A blue arrow signifies a positive causative effect (increase leads to increase), and a red
arrow indicates a negative causative effect (increase leads to decrease).

general relationships with each other, are shown in Figure 7. While modeling of oxygen
concentrations was beyond the scope of this study, we included it as a primary variable in the
biomass feedback loop because of the vast literature detailing the impacts of oxygen depletion on
bacteria [45, 47, 48]. These interactions were also discussed in the introduction, but essentially,
changes in flow cause changes in nutrient concentrations and temperature which then cause
changes in biomass growth. As biomass grows, it consumes nutrients and oxygen, and reduces the
local permeability of its substrate. This decrease in permeability in turn causes a decrease in local
fluid speed. The only relationship shown in this feedback loop that hasn’t been widely reported
on is that an increase in the flow vector may cause a decrease in biomass. Specifically, an increase
in flow speed, which thereby leads to an increase in pore-scale shear forces, can result in the
breakup and dispersal, and/or sloughing, of biofilms. This feedback loop represents some of the
primary intuitive relationships for biomass growth, but the relative importance of each
relationship depends on a number of other factors specific to the hydro-biogeochemical settings

of the domain in which the biomass growth occurs. In our own simulations, which are further
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discussed in greater detail throughout the rest of the chapter, we find many of the intuitive
relationships presented in Figure 7 do not show high correlation values, further showing the
specificity of biomass feedback loops in relation to the characteristics of the domain. The results
presented in this chapter thus intend to refine the assumptions of the standard biomass feedback

loop.

5.4.2 Spatial Trends
The average spatial distributions of the physio-chemical features for one of our losing simulations
(Fig. 8) can be used to elucidate some of the relationships in our biomass growth feedback loop.
Biomass is greatest in the high-porosity zones around the edges of the domain, and concentrations
are smallest in the low-porosity zone in the middle of the domain. Where fluid speeds are largest,
we see the greatest amount of lateral extension of biomass towards the middle of the domain. In
addition, a small amount of velocity-based biomass decay can be observed in the lower right
corner of the domain for the biomass distribution. The spatial distribution of molasses looks
similar to that of biomass except the gradients are smoother. The temperature seems to be
primarily determined by the horizontal flow (V,). The spatial distribution of Cr(VI) seems to be
primarily determined by molasses and V,. Because pressure is lowest at the bottom boundary and
highest at the right boundary, this results in a top-right to bottom-left pressure gradient. However,
since the entire left boundary of the domain has higher pressure than the bottom boundary, there
is also a top-left to bottom-right pressure gradient. Thus, fluid and nutrient flux enters in the top,
right and left sides of the domain and primarily exits the domain at the middle of the bottom
boundary. Thus, the high Cr(VI) concentrations on the left are a result of inward flux from the left

side of the domain, and the low Cr(VI) concentrations are a result of both inward flux from the
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right side of the domain and high biomass/molasses concentrations. The impacts of biomass
growth on Cr(VI) reduction can be seen in the slightly elevated concentrations of Cr(VI) near the
right boundary where biomass concentrations are high. Although molasses concentrations are
also high here, most of it is immediately consumed by biomass and won’t be available for abiotic
reduction. Thus, where biomass concentrations are lower, even though molasses is also lower, we
see greater reduction in chromium concentrations. In other words, the scale of the variability of
biomass concentrations (x=400 to x=350 is a 200 times decrease in concentration) is greater than
that of molasses concentrations (x=400 to x=350 is a 7 times decrease). Thus, at least for this
simulation, abiotic reduction is more efficient that biotic reduction (i.e., 1 mol of molasses spent
on abiotic reduction results in more total reduction than 1 mol of molasses spent on biomass
growth).

In addition to the temporally averaged spatial distributions of key physio-chemical
features for a single simulation, we present the average normalized spatial distributions of the
physio-chemical features over all of our simulations (Fig. 9). This figure represents the general
spatial trends that persist after averaging over each 1x2 meter simulation. The averaged spatial
distributions of biomass, molasses (labeled as ED in Figure 9) and Cr(VI) all have a significant
degree of similarity due to the boundary conditions of the simulations. Although the
concentrations of these features were randomized in our simulations, the predominant direction
of flow over the entirety of our simulations is from top (surface water) to bottom (groundwater).
However, on average the surface water contains decreased levels of ED relative to the
groundwater (not realistic, but a facet of the random variations of simulations), meaning biomass
growth is generally greater in the gaining simulations. Thus, as groundwater flows into the domain

from the bottom, and because nutrient and biomass concentrations had low initial values and the
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transport conditions are greater than those at the top boundary, each of these variables shows
high values near the bottom of the domain. The high concentrations of biomass on the right side
of the domain are a result of the fact that most simulations featured lateral flow moving from the
right to left side of the domain. Porosity, although impactful at the level of a single simulation,
seems to have no impact on biomass or ED concentrations when averaged over all simulations.
However, porosity does have a large impact on immobile molasses concentrations, with higher
amounts of ED;, appearing where porosity is high. Similar to the average spatial distributions for
a single simulation, the average spatial distributions over all simulations show the impacts of fluid

speed on biomass decay as a slightly lower concentration of biomass in the lower right corner.

Speed

Biomass Molasses

Figure 8. General (averaged over all simulations and time steps) trends for key physio- chemical features.

Each variable is normalized, with 0 (dark blue) corresponding to low values and 1 (dark red) corresponding
to high values.

These results highlight the complex interplay between physical, chemical, and biological processes
in the HZ, demonstrating the importance of considering spatial heterogeneity and temporal
dynamics in modeling efforts. The observed dominance of abiotic reduction over biotic reduction,
even in areas of high biomass concentration, provides a nuanced view to the relationship between

biotic and abiotic reduction and has significant implications for bioremediation strategies.
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5.4.3 Temporal Trends
The temporal trends (Fig. 10) of the physiochemical features reveal a variety of insights related to
the feedback mechanisms involved in these simulations. The red dotted lines in each time series
plot show the time value of the inflection points for biomass growth (Fig. 10e). Average biomass
concentrations increase very slowly for the first 18 days, increase rapidly for the next 36 days, then
increase at a slightly lower growth rate for the rest of the simulation (Figs. 10d and 10e). The first

inflection point (at t = 18 days) corresponds to the time when biomass growth starts to
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Figure 9. General (averaged over all simulations and time steps) trends for key physio- chemical features.
Each variable is normalized, with 0 (dark blue) corresponding to low values and 1 (dark red) corresponding
to high values.

dramatically increase. This also represents the point that ED and ED-immobile start to significantly
decrease, Cr(VI) starts to increase, and porosity starts to decrease. We find that the relationship
between biomass concentrations (in mol/m?) and porosity can be described via the equation

(5) ¢ =.141-10"Cpio

where Cpj is the biomass concentration. This equation may be useful for predicting general trends

in porosity as a function of biomass concentrations, although it is important to note that this
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function only represents our average simulation, and the exact value of this function will depend
on a variety of factors such as soil type, microbial community structure, flow rates, and nutrient
concentrations. At the highest amounts of growth (around day 46- 52), biomass growth has a clear
correspondence with pressure and V, (Figs. 10b and 10a). The increase in pressure corresponds to
a large decrease in the magnitude of Viand a small increase in the magnitude of V,. These changes
in flow then cause an increase in molasses, chromium and the rate of biomass biomass growth.
Around t = 52, the pressure starts to drop again and the magnitude of V, increases, resulting in
decreases in biomass growth, Cr(VI) and ED. At t = 60, the molasses concentrations and biomass
growth rate start to increase again, but the chromium concentration continues to decrease. The
vertical flow (V) thus seems to have a large effect due to the transport input conditions at the top
boundary. Specifically, greater negative vertical velocities, representing flow from the top of the
domain to the bottom, seem to result in a increase in molasses concentrations, which thus causes
an increase in biomass growth. Although biomass growth and molasses concentrations are
enhanced due to increased nutrient flux from the top boundary, the amount of Cr(VI) is also
increased from the greater top-boundary flow, resulting in a small increase in Cr(VI)
concentrations from day 42 to day 52. At t = 70, we approach the steady-state trends of the
simulations. From this point onward, the magnitude of V, slowly decreases, Vi and pressure slowly
increase, biomass growth and Cr(VI) slowly decrease, and molasses slowly increases. At this point,
biomass concentrations are relatively high, meaning the increase in Vi and pressure cause a
corresponding decrease in growth due to velocity-based biomass decay. While at t = 50 the spike
in Vi causes an increase in the biomass growth rate, by t = 70 it starts to cause a decrease in the
growth rate. The greater negative values of V, also should result in increased concentrations of

Cr(VI) considering the transport boundary conditions. However, because ED concentrations
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steadily increase due to the decrease in biomass growth, the increased amount of abiotic
reduction is enough to cause a decrease in Cr(VI). This indicates some dominance of abiotic
reduction over biotic reduction, although it is not possible to completely parse each impact from
these general time series. For a more robust analysis of the relative strengths of biotic and abiotic
reduction, we provide a sensitivity analysis of the molasses consumption stoichiometry coefficient
D1, discussed in the following section.

These findings reveal the intricate temporal dynamics of biomass growth, nutrient cycling,
and chromium reduction in the HZ. The identification of key inflection points and the
guantification of relationships between variables, such as biomass concentration and porosity,

provide valuable insights for predicting system behavior and optimizing remediation efforts.

5.4.4 Drivers of Biomass Growth and Chromium Reduction in the Hyporheic Zone

5.4.4.1 Sensitivity Analysis

To gain deeper insights into the biotic and abiotic determinants of biomass growth in the
hyporheic zone, we used sensitivity and correlation analysis. The sensitivity analysis (Fig. 11)
shows the biomass time series and spatial distributions of the last time step for 6 equally spaced
values of a simulation input variable (keeping all other input variables constant). We performed
sensitivity analysis for five key variables (temperature, carbon reuse efficiency/molasses
consumption stoichiometry coefficient, homogeneous permeability value, vertical velocity (V4),
and the biomass crowding parameter). The temperature sensitivity analysis (Fig. 11a) shows that
at higher temperatures the biomass growth rate increases, leading to differences in biomass
concentrations that remain constant after about day 60. The spatial distributions show more
variation in biomass concentrations for higher-temperature simulations. The carbon reuse

efficiency (D1), is a Chrotran parameter that defines the stoichiometric relationship between the
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Figure 10. General (averaged over all simulations and spatial dimensions) temporal trends for key physio-
chemical features. The red dotted lines show the approximate time of the biomass growth inflection points.
(a) Vi (blue) and V, (orange). (b) Pressure. (c) Porosity. (d) Biomass. (e) Biomass growth. (f) Cr(VI) (blue), ED
(orange), and ED-immobile (green). Here, biomass growth is shown to primarily be dependent on ED
concentration. The Cr(VI) timeseries shows an increase in concentration as molasses decreases, indicating
the dominance of abiotic reduction over biotic reduction.

ED and biomass. So for D1 = 1, one mol of ED creates one mol of biomass. The sensitivity analysis
for D1 (Fig. 11b) shows that lower values of D1 result in an increase in biomass growth that
increases over time. The spatial distributions show that for lower values of D1 , the biomass
spreads further throughout the domain. The permeability sensitivity analysis (Fig. 11c) indicates
that mean permeability of the domain has a huge impact on biomass growth. For k = 1 x 1072
there is a minute amount of biomass growth that can be observed in the bottom corners of the
spatial distribution, but for lower permeability values, we don’t observe any biomass growth. A
permeability of 1x 1072 m? is representative of silty sand or permeable basalt, implying that
aquifers primarily composed of these materials (or lower-permeability materials) are not likely to
house large concentrations of biomass. The V, sensitivity analysis (Fig. 11d) indicates that greater

vertical velocity contributes to a more sigmoidal (as opposed to linear or exponential) growth
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curve, results in generally greater biomass growth, and causes the growth curve to have small
undulations. This wave-like behavior is a result of spikes in flow speed causing significant shearing
of biomass, thus briefly decreasing the rate of biomass growth. a is another Chrotran parameter
that describes biomass crowding. For higher values of alpha, we see slightly lower biomass
concentrations over time, although the main difference is in the spatial distributions (Fig. 11e).
When crowding is high (low a), we get much higher concentrations of biomass that are
constrained to the first few centimeters of the domain. When crowding is low, we get a lower
maximum biomass concentration, but the biomass is spread throughout the entire domain.
Overall, the sensitivity analysis shows that many input features result in large changes to biomass
concentrations, illustrating the complexity of determining the most important general impacts on
biomass. The analysis also identifies mean permeability as the most critical factor in biomass
growth (compared to the other variables in the sensitivity analysis).

In addition to the sensitivity analysis of biomass, we also provide a sensitivity analysis of
chromium reduction (Fig. 12). Specifically, we provide the average spatial distributions (Fig. 12a-
12d) and time series (Fig. 12e) for simulations with: no biomass (Fig. 12d), biomass with low
molasses consumption stoichiometry (Fig. 12a), medium consumption stoichiometry (Fig. 12b),
and high consumption stoichiometry (Fig. 12c). The molasses consumption stoichiometry, given
here as D1, gives the number of mols of molasses require to produce 1 mol of biomass. Thus, for
D1 = 0.1, 1 mol of molasses produces 10 mols of biomass, and for D1 = 10, 1 mol of molasses
produces 0.1 mols of biomass. Although it is unlikely for 1 mol of molasses to produce 10 mols of
biomass (since the molar mass of a microbial cell is on the order of 10°, about 7 magnitudes larger
than the molar mass of molasses), the D1 parameter can also be thought of as carbon reuse

efficiency. When microbes die, they release bioavailable carbon that may be used by other
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Figure 11. Sensitivity analysis for selected features with large impacts on biomass growth. For each feature,
we show the time series, as well as the spatial distributions of biomass for the final time step. The colorbars
show biomass concentration in mol/m3. (a) Temperature sensitivity. (b) Carbon reuse efficiency (D1)
sensitivity. (c) Biomass permeability sensitivity. (d) Mean V (vertical flow speed) sensitivity. (e) Biomass
crowding coefficient (@) sensitivity. Biomass concentrations for the temporal sensitivity plots are given in
mol/m3, and concentrations for the spatial sensitivity plots are given in mg/kg.

microbes to grow [50]. In the situation with no biomass growth (Fig. 12), chromium reduction is
entirely dominated by abiotic reduction. Over time, the amount of incoming chromium at the
domain boundaries exceeds the amount of incoming molasses, meaning we see fast reduction of
chromium for the first 50 days, but once the molasses is consumed and starts to run out, the
chromium concentration increases (Fig. 12e). The situation with D1 = 0.1 unsurprisingly shows
a large amount of chromium reduction (Fig. 12a), since the small amount of molasses
consumption results in significant biotic and abiotic reduction. For D1 = 1, the molasses
consumption is greater, resulting in a smaller amount of biotic and abiotic reduction compared to
the D1 = 0.1. Compared to the no biomass growth situation, there is less chromium reduction
throughout most of the spatial domain, but there are biomass-induced hotspots of reduction near
the bottom of the domain (Fig. 12b). The time series for the D1 = 1 case shows that chromium
reduction starts off slower than the case with no biomass growth, but towards the end of the
simulation, the D1 = 1 case has a negative slope, whereas the no biomass growth case has a
positive slope. This can be explained by the fact that abiotic reduction is largely responsible for
reduction at early times, but becomes less of an important factor over time as the electron donor
concentration decreases. At later simulation times (t > 60 days), the biotic reduction starts to make
a significant impact on chromium concentrations, resulting in similar end-simulation
concentrations for the no biomass growth case and the D1 = 1 case. Forthe D1 = 10 case, all
the molasses is quickly consumed by chromium and biomass, but not enough biomass grows to

cause significant biotic reduction, resulting a small amount of initial reduction, then no reduction,
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with a flat curve reflecting the chromium concentration for the constant transport boundary
condition of these simulations.

5.4.4.2 Statistical Analysis

To further investigate the impacts of our simulation variables on biomass concentrations in a more
general sense, we used PCA and cluster analysis (Fig. 13a) to identify groupings and large-scale
relationships across all of our simulations. The first principal component, which explains 25% of
the variance of the dataset, seems to be primarily determined by biomass, nutrients, chromium,
molasses consumption stoichiometry coefficient (previously represented by D1, but in Figure 13
is represented by Ap), and A;, which controls the bio-reduction reaction rate. Thus, the first
principal component can be summarized as representing the primary factors impacting chromium
remediation and biomass growth. The second principal component, which accounts for 17% of
the total variation in the data, is primarily determined by flow vectors, pressure, permeability
covariance, A¢, a (the biomass crowding coefficient), porosity, and temperature. Generally, these
variables represent the various boundary conditions of the simulations.

We also see interesting sets of groups that form as a result of cluster analysis in the space
of the first two principal components. The right cluster can be described as the biomass and
nutrient cluster, the top is the flow and porosity cluster, and the left is the Cr(VI) cluster. These
clusters also represent most of the strongest correlations present in our simulations. Loosely, the
features within a cluster are likely to be positively correlated with each other, the right and left
clusters are likely to be negatively correlated with each other, and the top cluster has both positive

and negative correlations with the features of the left and right clusters.
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Figure 12. Sensitivity analysis for molasses consumption stoichiometry D1. (a) Spatial chromium
concentration difference distribution (Cro—growen — Cp1) for D1 = 0.1, which means 1 mol of molasses
produces 10 mols of biomass. The concentration for (a) is mostly positive because chromium remediation
is greater in the case of a low stoichiometric coefficient compared to the situation with no biomass growth.
(b) Spatial difference distribution for D1 = 1. (c) Spatial difference for D1 = 10. (d) Average spatial
concentrations of chromium in the case of no biomass growth. (e) The colorbars show chromium
concentration (or difference in chromium concentration for the plots on the left) in mol/L.

These correlations are further explored in the correlation matrix heatmap (Fig. 13b). The
correlations indicated in the PCA (Fig. 13a) differ from those shown in the correlation matrix
heatmap (Fig. 13b) for three key reasons. First, while PCA captures the directions of maximum
variance in the data, these principal components are not direct measures of correlation between
variables - rather, they represent linear combinations of variables that explain the most variance
in the dataset. Second, our PCA analysis was restricted to physio-chemical features, while the
correlation matrix encompasses a broader set of parameters, including a variety of biomass
growth parameters from Chrotran («, As, Ac, and Ap), permeability covariance ratio (k. ), and time.
Finally, for the PCA we use the time-and-space-averaged features of each simulation as input
(since PCA requires a 2D input), but for the correlation matrix, since we also include time, we use

the space-averaged features for each time point for each simulation as input.
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For biomass, the strongest correlations (as determined by magnitude in the correlation
matrix) with other variables determined over all 344 simulations are o, (0.58), time (0.50), o
(0.35), Ap (-0.30), pressure (0.30), ED (0.28), EDim (0.28), porosity (-0.24), Ac (0.22), and finally
chromium (-0.18). Surprisingly, biomass is more strongly correlated with the standard deviation of
pressure than the pressure itself (except for chromium). The reason for this is likely because the
standard deviations of features are more strongly correlated with the simulation boundary
conditions than the features are. These correlations also indicate that biomass concentrations are
highly dependent on time and nutrient concentrations, which are both normal assumptions made
about biomass growth. Furthermore, the mathematical dependence of biomass growth on time
and an electron donor is explicitly defined through Chrotran, so it is of no surprise that these
variables are strongly positively correlated with biomass in our simulations. Perhaps more
surprising, the augmentations we have introduced do not seem to result in significant correlations.
Biomass is positively correlated with temperature with a value of 0.04, meaning that the impact
of incorporating the Ratkowski function into the biomass growth equation is negligible. However,
this may be a result of the temperature boundary conditions of the simulations since the
sensitivity analysis of biomass growth shows a clear positive correlation between temperature and
biomass concentration (Fig. 11a). The pressure, and the standard deviation of pressure (which
loosely represent the pressure gradient), are the primary driving force of the flux of fluid and
solutes in the domain, meaning it should have significant correlation with biomass with or without
the speed-based biomass decay augmentation. Vi shows a small negative correlation with
biomass, indicating that an increase in Vy leads to a decrease in biomass concentrations. Thus,

there is some indication that the speed-based biomass decay influences the general
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spatiotemporal distribution of biomass in the hyporheic zone, although by a relatively small
amount.

The correlation between biomass and porosity is also interesting. One intuitive way to
think about this relationship is that they should have a positive correlation between each other
because a larger porosity means more pore space in which biomass can grow. However, biomass
growth causes a decrease in local porosity meaning the correlation may be negative. The results
of our general temporal trends, as well as the correlation heatmap, show a negative relationship,
implying that for the simulations in this chapter, the main relationship is defined by the growth of
biomass causing a decrease in porosity. However, this largely has to do with the density of the
biomass, which we defined as 10g/L. A greater density would mean less volume change per mol
of bacteria produced.

The correlation heatmap (Fig. 12a) also reveals important relationships for chromium. A
large majority of correlations between chromium and other values have magnitudes below 0.1.
The only significant correlations (=0.1) that chromium has are with biomass (-0.18), electron
donor (-0.15), porosity (0.10), and A, (0.16). As we saw from the sensitivity analysis of the impact
of Ap on chromium concentrations (Fig. 12e), a higher value of 1 leads to higher amounts of
chromium concentration as most of the molasses is taken up to grow biomass but a large number
of mols are required to produce one mol of biomass. The correlation with porosity is also related
to its correlation with biomass. As biomass concentrations increase, they reduce the local porosity
where growth is high. Porosity reduction only happens at a measurable level once biomass
concentrations exceed about 1 mol/m3, meaning that porosity reduction, at least in the case of

our simulations, is almost always associated with a decrease in chromium concentrations.
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The PCA (Fig. 13a) and correlation heatmap (Fig. 13b) add significant information to the
feedback cycles of known relationships identified in section 5.4.1. To update the feedback cycles
with the most relevant relationships identified in our simulations, we use the correlation matrix
to identify any correlations with magnitude greater than 0.15. To portray the fact that this new
feedback cycle (Fig. 14) purely represents our simulations, we have removed oxygen from the cycle
and added Cr(VI). Also, to indicate the difference between speed and flow direction, we have
added pressure to the cycle, and changed “flow vector” to V.. Finally, we have changed
permeability to porosity since we didn’t include permeability in the PCA and correlation analysis
due to issues of multicollinearity between permeability and porosity. This new feedback cycle
shows more negative relationships than positive ones. Pressure is responsible for most of the large
positive correlations between these key variables. It has large positive correlations with biomass
and nutrients, which in turn influence many of the other key simulation variables. Based on the
number of large correlations present, biomass and nutrient concentrations have the greatest
number of variables with significant relationships (4 each), indicating the general complexity
interactions that impact biomass growth and nutrient concentrations in the hyporheic zone.

Compared to the feedback figure designed from knowledge of intuitive relationships (Fig.
7), the new feedback figure presents many differences. In fact, the only relationships that remain
unchanged are the positive correlations between nutrients and biomass, and pressure (or flow
vector) and nutrients, and the negative correlation between biomass and porosity (or
permeability). The most surprising deletion of relationships is between temperature and biomass.
Biomass growth in our simulations was explicitly made a function of temperature through the
Ratkowski function, but this impact was not large enough to results in a high amount of correlation

between biomass and temperature. The most surprising correlation sign flip is between porosity
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and flow speed. Initially, we assumed porosity would increase as flow speed/pressure increases,
due to the speed-based decay of biomass (increased flow speeds result in high rates of biomass
decay which thus leads to increases in porosity). However, our results imply that this speed-based
biomass decay is not one of the biggest factors impacting porosity. Rather, porosity is primarily
controlled by the influx of nutrients that result in increased biomass growth and thus a reduction

in porosity, meaning the correlation between V, and porosity is generally negative.
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Figure 13. PCA for physio-chemical features that were varied for each simulation. The x-axis shows the first
principal component, the y-axis shows the second principal component, and the color bar represents the
KMeans clustering output in the 2D PCA space. ED, although the largest correlations for biomass are with
0sio and ogp. Cr(V1) shows complete anticorrelation with biomass, which is somewhat surprising given our
other results that show the dominance of abiotic reduction over biotic reduction (Fig. 3). o4 and ¢ aren’t
strongly correlated with anything, although the show slight positive correlation with Cr(VI) and negative
correlation with biomass, indicating that higher porosity soils may have less reductive capacity.

The most surprising new connection is between nutrients and temperature. Given that
temperature has no correlation with biomass, it is somewhat surprising that a negative correlation
exists between temperature and nutrients. Most likely, this correlation is the result of increased
nutrient consumption by biomass at higher temperatures, although it is unclear why the

correlation is so much stronger for nutrient concentrations than biomass concentrations. Overall,
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the complex relationships between flow conditions, nutrient availability, and biomass distribution
provide essential insights for designhing effective bioremediation strategies and improving

predictive models of HZ processes.
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Figure 14. Primary feedback cycles determined from correlation heatmap of simulations of biomass growth
in the hyporheic zone. A blue arrow signifies a positive correlation (increase leads to increase), and a red
arrow indicates a negative correlation (increase leads to decrease).

5.4.5 Velocity-Based Biomass Decay Sensitivity Analysis
In addition to using sensitivity analysis to understand the relationships between the variables of
our simulations, we also use sensitivity analysis to illustrate the impact of changing the parameters
of our velocity-based biomass decay equation. Specifically, we show the spatial distributions at
t=5400 hours for biomass (Figs. 15a-15f) and Cr(VI) (Figs. 15g-15I) for the situations of the
calibrated decay parameters, no decay, high g, low S, high @, and low a. The spatial distributions
for biomass generally show that biomass concentrations, as well as the spatial extent of the

biomass plume, are highly dependent on the velocity-based biomass decay parameters. The
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simulation with no decay has the highest concentrations of biomass, followed by the § = 1.2
simulation, then the a = 2 x 107 simulation. The a = 2 x 107° simulation shows essentially no
difference from the calibrated simulation, and the f = 0.4 simulation shows much lower
concentrations than the calibrated simulation. For the case of no decay, the spatial distributions
aren’t very different from those of the calibrated decay, but the low beta case has a dramatically
different spatial distribution. The Cr(VI) distributions follow the same patterns as the biomass,
except the no decay, @ = 2 x 10 and 8 = 1.2 simulations show less chromium (or more Cr(VI)
reduction) than the other simulations.

We also show the spatial distributions of porosity (Fig. 15m) and V, (Fig. 15n) to gain
deeper insight into the spatial distributions of biomass and Cr(VI). The spatial distribution of
biomass for the calibrated decay parameters (Fig. 15a) are largely determined by the low-porosity
area at x=250, y=50 and the high porosity zone at x=175, y=80. Decay is highest where fluid speed
is highest, which is in the corners of the simulation and the low-porosity zones in the middle and
left side of the domain (Fig. 15n). Unsurprisingly, these are the areas where we see the greatest
amount of difference from the simulation with calibrated parameters. Specifically, the no decay
(Fig. 15b) and [ = 1.2 (Fig. 15e) simulations for biomass show much greater biomass
concentrations in the corners and middle high-porosity area of the domain compared to that of
the calibrated decay simulation.

Surprisingly, although our general results (Fig. 10) show increased biomass results in a
relative decrease in Cr(VI) reduction, we observe the opposite trend here. Looking at the time
series outputs for the sensitivity analysis can help clear this confusion (Fig. 16). For biomass (Fig.
16a) and chromium (Fig. 16b), the time series plots show the relative differences highlighted by

the spatial distribution plots. The time series plots for molasses (Fig. 16c), on the other hand,
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shows very little difference due to changes in the velocity-based biomass decay parameters. Thus,
we see that for each case of different parameter values, the same amount of molasses is
consumed by biomass (besides the case of § = 0.4). Thus, greater biomass concentrations result
in greater chromium reduction, since each simulation has a relatively equal amount of abiotic
reduction. In other words, the increases/decreases in bioreduction due to parameter changes in
the velocity-based biomass decay equation don’t result in large decreases/increases in abiotic
reduction. Overall, this sensitivity analysis of the novel speed-based biomass decay model
demonstrates its generally small impact (besides the case of f = 0.4) on biomass distribution and
chromium reduction. For 8 = 0.4, which represents a weakly adhesive biofilm in which the bacteria
are poor initial surface colonizers, we see biomass concentrations may be dramatically reduced.
The results highlight the importance of accurately representing biofilm dynamics in response to
hydrodynamic conditions, which can substantially influence the overall effectiveness of

bioremediation processes in the HZ.

5.5 Conclusions
This study provides valuable insights into the complex dynamics of biomass growth and chromium
reduction in the hyporheic zone. Through a series of sophisticated simulations and comprehensive
analyses, we have demonstrated the intricate interplay between various physio-chemical features,
including flow characteristics, nutrient concentrations, temperature, and permeability. Our novel
velocity-based biomass decay model, incorporated into PFLOTRAN, offers a more nuanced
representation of biofilm dynamics in response to hydrodynamic conditions. This advancement
allows for more accurate predictions of biomass distribution and its impact on contaminant

reduction processes. Key findings from this study include:
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e The identification of abiotic reduction as the dominant process in chromium remediation
(for situations with D1 > 1).

e The identification of biomass growth as the primary process controlling the spatial
distributions of remediation hotspots, especially for situations with D1 < 1.

e The quantification of relationships between biomass concentration and porosity,

providing a useful predictive tool for future modeling efforts.
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Figure 15. Spatial distributions of biomass (a-f) and chromium (g-1) at t = 5400 hours for the calibrated decay
values (a & g), no decay (b & h), a=2x10%(c &i),a=2x10" (d &j), 8 =1.2 (e & k), and B = 0.4 (f & I).
All figures besides a and g show the difference between the calibrated decay and the respective statistic.
Spatial distributions of porosity at t = 0 (m) and V, averaged over all t (n) are used to further understand the
differences in simulation output due to changes in the velocity-based biomass decay parameters. The top
colormaps represents the concentrations shown in the calibrated decay plots (a & g), and the bottom
colormaps represent the feature (biomass or chromium) concentration of the calibrated decay minus the
feature concentration for the particular change in parameter value.
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Figure 16. Time series plots (averaged over both spatial dimensions) for biomass (a), chromium (b), and
molasses (c) for simulations with the calibrated decay parameters (¢ = 2 x 107, § = 0.8), no decay, a = 2 x
107, a=2x10"%° B =1.2,and B = 0.4. Differences due to parameter changes are relatively small except for
B =0.4, and are largest for biomass, then chromium, then molasses.
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e The revelation of complex feedback mechanisms between flow conditions, nutrient
availability, and biomass growth, highlighting the importance of considering spatial
heterogeneity in hyporheic zone modeling.

e The demonstration of the impact of speed-based biomass decay on overall system
behavior and contaminant reduction efficiency, showing that the impacts are largely
negligible except in cases of extremely high fluid speeds or weakly adhesive bacteria (8 <
0.4) that make poor initial surface colonizers.

These results have far-reaching implications for bioremediation strategies in contaminated
aquifers. By providing a more accurate representation of biomass dynamics and contaminant
reduction processes, this study enables better prediction and optimization of remediation efforts.
However, we also recognize that this study contains many limitations. For example, we
acknowledge that a more robust equation for speed-based biomass decay should be derived from
first principles (such as continuity and mass balance) and incorporate a variety of upscaled
parameters, but this was beyond the scope of our work, especially considering the complexities
of integrating such an equation into PFLOTRAN. Thus, we opted to solve this problem through a
method of adapting a framework already present in PFLOTRAN and calibrating fitting parameters
with pore-scale research of biofilm decay as a function of shear stress. This chapter also reflects
one of the primary goals to improve bioremediation. Through improvements in our understanding
of abiotic and biotic chromium reduction, and the sensitivity analysis of the impact of speed-based
biomass decay on chromium reduction, we provide valuable insights and tools that can help

improve contaminant remediation efforts.
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Future research should focus on validating these findings with field studies and exploring
the implications for bioremediation strategies in diverse hyporheic zone environments.
Additionally, the integration of this advanced biomass decay model with other reactive transport
processes could further improve our understanding and prediction of complex subsurface
biogeochemical dynamics.

While this chapter is not directly influenced by any of the previous three chapters, it seeks
to directly improve microbe-mediated reactive transport methods, which is the fundamental and
overall goal of this dissertation. Furthermore, this chapter uses micro-scale physics to examine the
transport of biomass at the Darcy scale, thus adding breadth to this dissertation in terms of its

potential applications to microbe-mediated reactive transport.
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Chapter 6: STAMNet - A Spatiotemporal Attention Module and Network
for Upscaling Reactive Transport Simulations of the Hyporheic Zone

6.1 Abstract
Reactive transport (RT) simulations are important tools for understanding and predicting
phenomena in the subsurface. However, RT is computationally intensive and complex simulations
can be numerically unstable. Here, we present STAMNet, a low-parameter attention-based suite
of neural nets that can upscale and upsample reactive transport simulations, applied to example
problem of biomass growth in the hyporheic zone. We show that a simple MLP offers 30x speedup
over standard multiphysics RT simulations and can accurately (90% R?) predict the output of
multiple variables of a 1x20 meter RT simulation by using the output from a 1x2 meter simulation
as input. We add efficient channel attention to our optimized MLP which significantly improves
the mean average error but doesn’t impact the R%. We further develop a novel spatiotemporal
attention module (STAM), which results in significant improvements both in mean square error
and R? (92.5%). Finally, we present a network architecture that utilizes STAM to accurately (99.9%
R?) upsample simulations in two dimensions. Specifically, our model allows for the 2x upsampling
of simulations in the x and y dimensions to convert a coarse-grained input into a fine-grained
output. These models have potential use for Monte-Carlo-style RT simulations and the work
presented serves as a proof-of-concept for accurate prediction of large sets of spatiotemporal

outputs.

6.2 Introduction

In the vast realm of environmental science, the hyporheic zone (HZ) stands out as a

complex interface that has captured the attention of researchers for decades [1-3]. This subsurface
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region, generally defined as the interface between river water and groundwater, hosts a myriad of
complex interactions [4], with biofilms serving as a central character influencing broader
hydrological and geochemical cycles [5].

Multiphysics simulators that use analytical and numerical methods to solve systems of
equations that describe hydro-biogeochemical interactions in the subsurface environments, also
known as reactive transport (RT) simulators, such as PFLOTRAN [6], STOMP [7], and CrunchFlow
[8] are generally considered the gold standard for simulations of phenomena in the HZ. However,
large scale RT simulations, and Monte-Carlo-type investigations of RT simulations, have high
computational complexity and cost which are sensitive to convergence criteria [9-11] causing
numerical instability and challenges in supporting hydro-biogeochemical research efforts.

Several recent studies in the field of computer science have shown that accurate multi-
physics simulation emulation is possible with deep learning [12-16]. Thus, to alleviate the common
shortcomings of RT simulators, some studies have attempted to apply these emulation
frameworks to RT data [17-22]. Laloy and Jacques presented some of the earliest studies that
looked into RT emulation with deep learning. They found deep neural networks (DNNs)
outperform polynomial chaos expansion networks for the prediction of a target RT variable given
some input variables of the RT timeseries. Although emulation is still a popular topic, much of the
current research in this domain also seeks to upscale micro and pore-scale models to the
macro/continuum scale. Wang and Battiato (2024) provide a comprehensive framework to upscale
RT in fracture- matrix systems. Their framework uses a combination of traditional RT algorithms
with a recurrent neural network (RNN) to capture the impact of small-scale features, which they
show results in improved accuracy compared to a pure macroscale model. You et al. (2024) used

convolutional neural networks (CNNs) to upscale pore-scale simulations to continuum-scale
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simulations. They found that the effective surface area and effective diffusion coefficient could be
predicted with high accuracy, but permeability is difficult to predict. These frameworks represent
significant advances in the field of RT modeling, although they suffer from a lack of easy integration
with current popular methods, and are constrained in their scope. General models that can be
easily implemented would increase access of reactive transport simulation tools to a larger
community of researchers.

In this chapter, we provide a deep-learning-based method for the upscaling and
upsampling of RT simulations. We chose to model biomass growth in the hyporheic zone due to
the complexity of the simulations and its importance for many biogeochemical functions they
serve. Furthermore, simulations of biomass growth result in outputs at large scales that may be
very different than outputs at small scales, which necessitates a more careful upscaling than a
simple interpolation or polynomial fit. In addition, we consider our simulations of biomass growth
in the hyporheic zone to be a proxy for general reactive transport modeling, since the biomass
growth simulations take advantage of most of the modeling capabilities in PFLOTRAN.

One of the primary motivations for this chapter comes from the high computational time
requirements experienced while generating experiments for chapter 5. Given that these
simulations would crash about 15% of the time, and were more likely to crash for larger scale
simulations, our generation of 344 simulations took over one month of constant 12-core computer
use. Thus, the primary goal of this chapter to provide a tool capable of speeding up the process of
generating many simulations at large scales.

The upscaling task we try to improve in this chapter is specifically the prediction of the
spatiotemporal output for a 1x20 meter simulation given the output of a 1x2 meter simulation as

input. To achieve this task, we use a subset of the simulations featured in chapter 5 for training
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and testing. We test the performance of an optimized MLP, the MLP + efficient channel attention,
and the MLP + our spatiotemporal attention module, STAM, which we find to generally outperform
the other models. This model allows for a 30x speedup in the generation of large-scale simulations
with an R? of the predicted mean time series of 0.925. We also devise an optimized linear
architecture that incorporates STAM for the task of upsampling, which takes a 1x2 meter
simulation with a resolution of 100 voxels/m as input and outputs a 1x2 meter simulation with a
resolution of 400 voxels/m.

The work presented in this chapter is an enhanced version of the in-review article:
“Berghouse, M. & Parashar, R. STAMNet— A Spatiotemporal Attention Module and Network for
Upscaling Reactive Transport Simulations of the Hyporheic Zone. Computers and Geosciences.
2025.” This chapter adds to the work currently in review by exploring connections with chapters
4 and 5 of this dissertation and expanding the discussion on general contributions to microbe-

mediated reactive transport.

6.3 Methods
This chapter uses multiphysics simulations to explore biomass growth in the HZ, and deep learning
models to upscale and upsample these simulations. The simulations used in this chapter represent
a subset of the simulations featured in chapter 5. While chapter 5 uses 344 simulations, many are
not separated into low and high scale pairs, and some of the pairs show very little difference
between outputs at low and high scales. We originally trained and tested models on all possible
simulation pairs, but we found that performance of STAMNet was not significantly better than an
optimized MLP without attention since a majority of the simulations were easy to predict. Thus,

we arbitrarily dropped some simulations with small differences between low and high scale,
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resulting in 138 simulations (out of the 344 total generated for chapter 5) used to train and test
STAMNet-Upscale. In this section, we describe the boundary conditions and parameters used for
our simulations, and the model architectures and training/testing procedures used for our

upscaling and upsampling frameworks.

6.3.1 Simulations of the Hyporheic Zone

6.3.1.1 General Description of Simulations

Our simulations are based in PFLOTRAN, a multi-physics reactive transport simulator developed
by multiple national laboratories [6]. PFLOTRAN represents a state-of-the-art computational
framework for simulating coupled subsurface flow and reactive transport processes across
multiple spatial and temporal scales. This massively parallel reactive transport code integrates
sophisticated numerical methods to resolve multi-phase and hydro-biogeochemical interactions.
The code’s architecture enables the simulation of various subsurface processes, including density-
dependent flow, variable saturation conditions, and non-isothermal phenomena, alongside
comprehensive biogeochemical reactions such as aqueous complexation, mineral
precipitation/dissolution kinetics, surface complexation, ion exchange, and microbially mediated
transformations. As discussed in the introduction, we seek to use this reactive transport simulator
to model biomass growth in the hyporheic zone. To this end, we have specifically adapted the
Chrotran [22] version of PFLOTRAN to represent growth of biomass in the hyporheic zone at the
Darcy scale. Chrotran defines biomass growth as a function of electron donor (ED) concentration
through simple Monod kinetics. It uses biotic and abiotic reactions to model Cr(VI) reduction,

defines a mobile-immobile mass transfer system for biomass and ED, and allows for bioclogging
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modeling capabilities via the dependence of porosity and permeability on biomass concentration.
For a full description of the biomass growth model, please refer to the original Chrotran paper.
The simulations described in this paper were created for the purpose of modeling complex
interactions in the hyporheic zone. We simulate different flow conditions, permeability conditions,
and concentration inputs to train our model on a general representation of simulations of biomass
growth in the hyporheic zone. The simulations all contained high levels of nutrients that allowed
for relatively linear growth throughout the time frame of the simulations (up to 228 days). For
cases with low concentrations of nutrients, biomass growth leveled off more towards the end of
the simulations. We chose to not investigate nutrient-limited scenarios because we observed less
differences between small scale and large-scale simulations in cases of nutrient limitation,
meaning a model that allows mapping between the two would be less useful. Thus, we focused
on relatively high-nutrient simulations which show significant differences between small scale and
large-scale outputs.
6.3.1.2 Boundary Conditions
For the baseline, we simulate a 1 meter (in vertical, or direction of hyporheic flow) by 2 meter
longitudinal (in direction of river/groundwater flow) slice of a synthetic hyporheic zone
represented by 100 by 200 voxels (dx = dy = 0.01 m). The top and bottom boundaries (1 m
difference) respectively represent the surface and bottom-HZ pressures (which controls the
amount and direction of vertical flow), and the left and right boundaries (2m difference) represent
the pressure gradient in the longitudinal direction, thus controlling the vector of groundwater flow
(also referred to here as the horizontal flow). The horizontal pressure gradient is constant over the
duration of any given simulation, and the vertical pressure gradient for any given simulation is

derived from three different sets of in-situ hyporheic flux data [23-25] (Chapter 5, Figure 5). As
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discussed in further sections of the methods, all simulation variables, including the horizontal and
vertical pressure gradients, take on different values for different simulations. From these base time
series, we introduce random variations (large variations for the "high speed" time series and small
variations for the other time series in Figure 5 of chapter 5) to increase the variability in potential
flow conditions for our models to be trained on. The base set of pressure gradients for the
horizontal flow was determined a range of realistic groundwater flow rates. Both horizontal flow
(Vy) and vertical flow (V), and transport, are regulated by Dirichlet boundary conditions.

The primary motivation of this study is to develop upscaling and upsampling methods for
RT simulations using deep learning (Fig. 1). Thus, we generated pairs of simulations for training
that are identical in every way except scale (for upscaling) or resolution (for upsampling). As
discussed above, the baseline simulations represent a 1 meter by 2 meter slice of the HZ. For the
upscaling task, all models use the baseline 1x2 meter simulation as input to predict a 1x20 meter
simulation. For the upsampling task, all models use the baseline 1x2 meter simulation with dx =
dy = 0.01 m as input to generate a 1x2 meter simulation with dx = dy = 0.005 m. All upscaling
simulations ran for 228 days (114 timesteps) and all upsampling simulations ran for 86 days (43
time steps). It should be noted that for the gaining and losing simulations the in-situ hyporheic
flux data (Chapter 5, Figure 5) only extended to 170 days. We therefore applied constant flow
boundary conditions to the last 58 days. The upscaling simulations were also different from the
upsampling simulations in that they are based on heterogeneous permeability distributions
whereas the upsampling simulations contain homogeneous permeability distributions. Sample

permeability fields for the upscaling simulations are given in Figure 6 of chapter 5.
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a.
Figure 1. Sample ground truth snapshots of the 1x simulation (a) and 10x simulation (b) outputs. From top
to bottom, the snapshots represent normalized biomass concentrations at t = 40, 80, 120, and 160 days.
The primary motivation of this work is to provide a model that allows accurate mapping from 1x to 10x.

Table 1 Description of variables and their ranges of possible voxel-specific values used in the simulations.
From left to right, these variables signify biomass, electron donor (molasses), and chromium concentrations,
vertical velocity, horizontal velocity, pressure, temperature, porosity, permeability, biomass crowding
parameter, and biomass growth parameter.

Variable B ED Cr(V1) v, Vi P(Pa) | T ¢ k a A
(’"_"’) (’"_"’) ('"_"’) (m/hr) | (m/hr) (°C) (m?)
m3 L L
Min le-10 le-20 le-20 -632 -486 -1214 4.8 le-4 le-15 0.5 le-5
Max 765 5.5e-3 | 7.6e-3 671 651 7099 24.9 0.6 1.1e-9 3.0 le-4
Mean 58 8.1e-6 | 1.4e-5 -5.8e-2 -1.4e-2 786 11.5 0.13 2e-10 2.8 le-5

6.3.1.3 Simulation Variables

To train and test our model on a large variety of simulations, we added random variations to each
of the variables of the simulations. The primary simulation variables, as well as their voxel-specific
min, max, and mean values across all simulations, are given in Table 1. The average spatial
distributions (in time and across all simulations) of the output features of the 1x2 meter upscaling
simulations are shown in Figure 2. Molasses, biomass, and Cr(VI) all have similar distributions due
to their coupling via chemical equilibria. In addition to the features listed in Table 1 and Figure 2,
less consequential features that varied between simulations included S., Sq4, and A, which can all

be classified as biomass growth parameters.
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6.3.2 Deep-Learning-Based Upscaling

6.3.2.1 Model Architectures

Our initial model selection process was to look for published architectures that have been shown
to be effective for spatiotemporal data [26-28]. However, our input and output tensors have shape
[b, t, h, w], where b is batch size, t is the temporal dimension, and h and w are spatial dimensions.
Thus, given the irregular shape of our inputs ([b,114,100,200]), and the large shape of our outputs
([b,114,100,2000]) for the upscaling task, we found that these published spatiotemporal models,
which are often used for classification or object detection/tracking in video data, either were too
large, or would not work well with our input shape. Thus, we moved to a smaller and simpler
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MLP-based structure of our own design (Fig. 3a). This architecture takes in a 4D input (including
batch size) and passes it through a series of linear layers with nonlinear activation functions to
progressively increase the size of the final dimension to the desired number. The best number and
sizes of linear layers, and the best activation function, were determined via automated
hyperparameter tuning with Optuna [29]. After optimizing the structure of the MLP, we used
ablation experiments with different variations of the first layer to determine the best method for
initial upscaling (Table 2).

For both the upscaling and upsampling models, we also investigate the impact of attention
on model performance. Specifically, we integrate efficient channel attention (ECA) [30], and a
novel attention method (STAM), into the optimized MLP structure after the first layer (Figs. 3b &
3c). Our efficient channel attention method uses 1D convolution in the temporal dimension,
allowing the model to focus on more relevant temporal features. STAM uses convolutions in
multiple dimensions (fully described in section 6.3.2.2) to improve focus on task-relevant spatial
and temporal features. The resulting architecture with the inclusion of STAM is called STAMNet.
For the rest of the paper, we refer to the upscaling version of STAMNet as STAMNet-Upscale, and
the upsampling version of STAMNet as STAMNet-Upsample. STAMNet-Upsample has a different
architecture than STAMNet-Upscale because the task of upsampling requires a doubling in size for
both of the spatial dimensions (Fig. 3c). At a basic level, STAMNet-Upscale increases the last spatial
dimension by 10x, whereas STAMNet-Upsample increases both spatial dimensions by 2x.
6.3.2.2 Spatiotemporal Attention Module (STAM)
The STAM architecture (Fig 4) applies attention across multiple dimensions of the input tensor. It
consists of four main branches (M1 - M4) that process the input in different permutations, allowing

the network to capture dependencies across various dimensions.
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Figure 3. Model architectures for the optimal MLP (a), STAMnet-Upscale (b), and STAMNet-Upsample (c).
Each block represents an intermediate output stage, and the arrows represent the layers of the model. The
optimal MLP (a) and STAMNet-Upscale (b) take inputs of shape [b, t, h, w] and return outputs of shape [b,
t, h, 10w]. STAMNet-Upsample takes inputs of shape [b, t, h, w] and returns outputs of shape [b, t, 2h, 2w].
STAM is a modular attention method that returns an output with the same shape as the input. The
architecture of STAM is given in Figure 5. For the STAMNet-Upsample (c), permutations are used after the
2nd and 4th linear layers to have the appropriate dimensions. This model takes an input of shape [b, t, h,
w] and gives an output of shape [b, t, 2h, 2w].

The four attention branches can be summarized as follows - M1 processes the input along
the temporal dimension through convolutional layers and reduces the size of the width dimension
through a linear layer, which results in an attention map of shape [b, t, h, 1]. M2 processes the
input along the width dimension through convolutional layers and reduces the size of the time
dimension (or the horizontal length being upscaled), which results in an attention map of shape
[b, 1, h, w]. M3 processes the input along the height dimension and results in an attention map of

shape [b, t, h, 1], and M4 processes the input along the temporal dimension and results in an
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attention map of shape [b, t, 1, w]. M3 has a similar structure to M1 (and the same output shape)
except it processes the height dimension through convolution instead of the weight dimension.
Each branch follows a similar pattern: Conv2D (5x5) = LeakyRelLU - Conv2D (1x1) - LeakyRelU
- Linear = Sigmoid. The output of each branch is multiplied with the input and the resulting
product is added back to the input, creating two levels of residual connections. The outputs from
all branches are then averaged and passed through a sigmoid activation function and multiplied
and then added to the input to get the final attention map, thus creating additional residual
connections.

STAM incorporates several architectural features that enhance its ability to map
spatiotemporal relationships. By processing the input tensor along different dimensions, it
captures complex spatial-temporal dependencies that simpler. attention mechanisms or non-
attentive models might overlook. The combination of 5x5 and 1x1 convolutions enables STAM to
integrate both local and global context within each dimension [31-33]. Through residual
connections and a final aggregation step, the model adaptively refines features, highlighting
important patterns while attenuating less relevant information [34, 35]. The incorporation of
LeakyReLU activations and dropout (in M2) introduces non-linearity and regularization, potentially
enhancing the model’s generalization capabilities [36]. Furthermore, by processing the input
through different permutations, STAM generates complementary attention maps, effectively
capturing diverse data patterns [37]. Lastly, the addition of the input to the attention-weighted
features preserves original information while facilitating the learning of residual representations,

thus providing a comprehensive approach to spatiotemporal feature extraction and refinement.
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Figure 4. Architecture of the Spatiotemporal Attention Module (STAM). The model consists of four separate
attention arms. Each attention arm has two 2D convolutional layers and one linear layer followed by sigmoid
activation, then multiplication and addition with the original input. The attention arms differ in their shapes,
which results in feature maps that are able to capture complex cross-dimensional relationships. The
attended feature maps from each attention arm are then averaged, passed through a sigmoid layer,
multiplied by the input and finally added to the input to get the final output of the modular attention
method.

6.3.2.3 Training, Validation, and Testing Process
Although the RT simulations contain multiple output features (Fig. 2), we chose to focus on
upscaling biomass, Cr(VI), and molasses. All other variables either have little variation between 1x
and 10x scale simulations (such as temperature and pressure) or can be easily upscaled through
physics-based methods (such as flow [38-40] and permeability [41]). With about 48 GB of VRAM,
models could be developed to upscale all three variable at once. However, we were restricted to
24 GB of VRAM, and at this amount of VRAM we weren’t able to effectively train multi-feature
models. Thus, we trained a suite of models that separately upscale our three target variables.

For the upscaling task, 48 pairs of simulations were used for training, 8 pairs of simulations

were used for validation, and 13 pairs of simulations were used for testing. Validation scores were
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used to optimize hyperparameters and determine layer placement within STAMNet. Once the best
model architectures were determined through hyperparameter optimization and ablation studies,
the validation data was also used for training, resulting in 56 pairs of training simulations and 13
pairs of testing simulations for the final calculation of scores. We used the AdamW optimizer,
dropout of 0.2 after the first linear layer (or after the attention layer for models with attention),
and a learning rate (Ir) between 1.6e* and 4.6e™ with a cosine annealing warm restarts scheduler.
For biomass upscaling we used a Ir of 1.6e* and trained for 25 epochs, for biomass upsampling
we used a Ir of 4.6e* and trained for 900 epochs, and for ED and CR(VI) upscaling we used a Ir of
3.0e™ and trained for 110 epochs. The nhumber of epochs used for each feature was determined
based on when the validation set stopped showing improvement. For all biomass upscaling
experiments, we trained and tested each model type 14 times and report the averages of each
performance metric (MSE, MAE, and R?). Each metric is calculated between all elements of the
output tensor (x) and the ground truth (y). For example, the MAE is the sum of errors between
each element of x and y divided by the number of elements in x and y. We also plot the mean time
series and spatial distributions for each model to provide a visual understanding of the prediction
errors. Specifically we use time series to investigate the average temporal distributions of the
predictions of biomass, molasses (ED), and chromium for a simple interpolation model, an
MLP+ECA model, and our STAMNet model. The spatial distributions are presented in two ways.
The blue-green-yellow spatial distributions show the absolute concentrations of the feature in
guestion, while the blue-white-red spatial distributions show the difference between the ground
truth and the prediction for that particular model. For this visual analysis, we use a simple

ensemble of the best-scoring variations of each model.
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For the upsampling task, 40 pairs were used for training, 8 for validation, and 12 for testing.
After optimal model structures were determined, the 8 simulation pairs used for validation were
included in the training set, resulting in a final 48 simulation pairs for training and 12 simulation
pairs for testing. All results for the upsampling task are a comparison of the average of 8 separately
trained and tested models. For both upscaling and upsampling, the loss function used for training
was MSE + 0.6 x MAE, which was used over a standard MSE loss function as we found that only
using MSE tends to result in a higher degree of overfitting. Furthermore, we found Huber loss to

not weight the MAE strongly enough, which resulted in decreased MAE and R? scores.

6.4 Results

6.4.1 Ablation Experiment
To determine the best simple method of upscaling, we experimented with three model variations
(Table 2). The structure of the linear model is shown in Figure 3a. This structure was determined
through optimization of validation scores via Optuna. In the linear model, the first layer is a linear
layer that increases the size of the final dimension of the input by 10x. To try and reduce the
number of parameters, or have roughly the same number of parameters with a deeper first layer,
we tried to replace the first linear layer with a 10x interpolation layer and a 20x interpolation layer.
The reasoning behind this is that we had observed simple interpolation often allows for reasonably
accurate upscaling compared to other simple models, so we thought it might be a parameter-
efficient way to upscale the final dimension. The 10x interpolation layer takes the input of shape
[b, t, h, w] and outputs a tensor of shape [b, t, h, 10w], while the 20x interpolation layer takes the
same shape of input and outputs a tensor of shape [b, t, h, 20w]. Thus, the interpolation 10x model

has the same structure as the linear model besides the 1st layer, which is instead a 10x repeat
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interleave layer. Similarly, the 20x interpolation model has an initial layer that interpolates the final
dimension of the input to 20x size. Because the linear layer of the optimal MLP upscales the final
dimension to 10x, the 20x model has a slightly different structure of second layer since it takes an
input of [b, t, h, 20w]. The linear model performed best in the MAE and R? metrics. Thus, although
interpolation allows for model parameter savings, it is not much, and the reduced accuracy is not
worth these savings in most cases, so we developed STAMNet on top of this optimal linear

architecture.

Table 2. Ablation experiments for biomass upscaling to determine the best method of increasing dimension

2
size. MAE is given in 1:1—031 and MSE is given in (1:1—031) .

Linear | Interpolation (10x) | Interpolation (20x)
MSE | 2508 2471 2471
MAE | 21.62 22.25 22.02
R? 0.897 0.880 0.875

6.4.2 STAMNet-Upscale Performance

6.4.2.1 Biomass Upscaling

The results of our upscaling models for the biomass prediction task are given in Table 3. The
interpolation model here is different than the interpolation models used in the ablation
experiments. In the ablation experiments, the interpolation was used as an initial layer of a model
with multiple linear layers and an activation function after the interpolation. For the interpolation
model in table 3, there are no linear layers after the interpolation. In other words, it is just a simple
interpolation of the final dimension, which is the most simple and rapid way to generate
reasonably accurate results for the task of upscaling as defined in this paper. The simple MLP is a

one-layer MLP that increases the size of the final dimension by 10x. The optimal MLP is the fully
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optimized MLP structure given in Figure 3a. The structure of STAMNet, our proposed best-
performing model, can be seen in Figure 3c. The MLP+ECA model has the same structure as
STAMNet, but with the ECA attention module instead of the STAM attention module.

For all models tested, STAMNet-upscale shows the strongest performance by a statistically
significant margin for the both MSE and R? metrics. Both models with attention modules
outperform the optimal MLP, further indicating that attention is a useful tool for developing robust
upscaling model architectures. STAMNet-Upscale performs better than the MLP+ECA model,
indicating that cross-dimensional feature refinement offers performance benefits over single
dimensional (temporal) feature refinement. All trained models perform better than simple
interpolation, showing the general benefit to the approach of using deep learning for upscaling of
reactive transport simulations.

To further investigate the performance of our different models for the task of upscaling
biomass, we plot the spatial error (Fig. 5) and the mean time series error (Fig. 6). The spatial errors
show that the simple interpolation (Fig. 5d), the MLP+ECA (Fig. 5c), and STAMNet-Upscale (Fig.
5b) all fail to capture fine variations in the ground truth spatial distribution. Instead, they achieve
a low MSE/MAE by averaging out the variabilities in space. This is to be expected, however.
Without a method that specifically constrains the spatial distributions of biomass concentrations,
the model lacks the ability to predict exactly what the upscaled version will look like, so the model
just makes an average guess. In other words, the neural nets may learn to approximate the vertical
variability in biomass well, since this doesn’t change much between small and large-scale
simulations, but have no ability to predict the horizontal variability in biomass as this may change
significantly based on scale and more strongly depends on the differences between the small and

large- scale permeability fields. To compensate for this lack of knowledge, the neural nets make
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predictions that represent averages across many horizontal voxels. We experimented with loss
functions to try to add this constraint to the spatial distribution of the outputs, but found it had
too negative of an impact on the outputs of time series distributions and did not improve the
accuracy of the spatial distributions (either in exact value or "look") enough to warrant further
investigation. Thus, although there are some differences in the spatial error between different
models, no model we tested provides an adequate representation of physically realistic spatial

variations, and more robust techniques are needed to achieve high-fidelity spatial predictions.
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Figure 5: Spatial error distribution of biomass averaged over all test simulations and time steps. (a) Ground
truth spatial distribution. (b) Ground truth minus output from STAMNet-Upscale. (c) Ground truth minus
the MLP+ECA model. (d) Ground truth minus simple interpolation. (e-h) Zoomed in versions of a-d. These
figures show that STAMNet has difficulty predicting fine spatial variations but is more accurate than a simple
interpolation.

In terms of comparison between the methods, STAMNet-Upscale and the MLP+ECA
clearly outperform the interpolation, which can be better seen from the zoomed-in sections of the
spatial error distributions (Figs. 5e-5h). There is a very slight difference between error for
STAMNet-Upscale and the MLP+ECA, but it is essentially negligible with regards to the overall
accuracy of the predictions of spatial distributions. One big difference between the interpolation

and the attention-based neural nets is that the interpolation model greatly overcalculates biomass
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concentrations, especially near the right boundary of the domain. The right boundary of the
domain is often a source of nutrients and thus a location of dense biomass growth. In the 1x2
meter simulation, these nutrients are able to reach into and cause biomass growth in about half
of the domain, meaning a simple interpolation to the 1x20 meter simulation leads to high biomass
concentrations that extend too far into the domain. Although we scale up the horizontal flow
speed (V) for the 1x20 meter simulation, we still see that biomass tends to cover a smaller
horizontal portion of the domain at larger scales. This is due to a variety of hydro-biogeochemical
phenomena such as mixing, uptake and dispersion of nutrients, and the amount of space the
biomass growth can cover given a certain amount of time and nutrients. In other words, because
growth is largest at the domain boundaries due to the influx of nutrients, there is a limit to how
far this boundary-enhanced growth can extend towards the middle of the domain. The neural
nets, on the other hand, undercalculates biomass at the boundaries (right, top, and left) due to

their tendency to average local variations in concentration.
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Figure 6. Biomass time series averaged over all upscaling test simulations and time steps. The blue dotted
line corresponds to the time series for a simple interpolation of the input, the red dashed line corresponds
to the output for STAMNetUpscale, and the green dash-dotted line corresponds to the ground truth. This
figure shows STAMNet outperforms simple interpolation and achieves a high level of accuracy in terms of
time series prediction.
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In addition to our analysis of the spatial errors of the simple interpolation method and
attention-based models, we also investigate their performance in terms of the average time series
prediction (Fig. 6). Unlike the spatial distributions, all models perform quite well at the task of

capturing the average upscaled time series. Both attention-based models clearly outperform a

simple interpolation, and STAMNet-Upscale slightly outperforms the MLP+ECA model.
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Figure 7. Spatial error distribution of biomass averaged over low and high-concentration test simulations.(a)
Ground truth spatial distribution for low-concentration simulations.(b) Ground truth minus output from
STAMNet-Upscale for low-concentration simulations.(c) Ground truth minus the MLP+ECA model for the
low-concentration simulations. (d) Ground truth minus simple interpolation for low-concentration
simulations. (e-h) High-concentration versions of a-d. These figures show greater difference between the
spatial errors of the interpolation and our trained networks for low-concentration simulations than high-
concentration simulations.

To further refine our general investigation of the upscaling potential of STAMNet for RT
simulations, we split this analysis up to investigate performance on high-concentration and low-
concentration simulations. Of the 13 test simulations, 5 simulations can be categorized as high-
concentration (mean biomass greater than 50 mol/m3), and 5 simulations can be categorized as
low-concentration (mean biomass less than 15 mol/m?3). The spatial errors for both the low and
high concentrations (Fig. 7) generally show the same trends as the spatial errors for the full set of
results (Fig. 5). For the low concentrations, STAMNet-Upscale (Fig. 7b) and the MLP+ECA model
(Fig. 7c) are completely indistinguishable, and both clearly outperform the interpolation (Fig. 7d).

For the high concnetrations, there is similarly very little difference between the spatial errors for
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STAMNet (Fig. 7f) and the MLP+ECA model (Fig. 7g). Both attention-based neural nets outperform
simple interpolation (Fig. 7h), although similar to the full set of results for biomass upscaling, these

differences are negligible compared to the overall error of the spatial distributions.

Table 3. Results for upscaling experiments. Each model was trained and tested 14 times, and values here

correspond to the average scores over all 14 model iterations. MAE is given in 1:1—031 and MSE is given in

(1;—(;1 )2. Values in bold indicate statistically significantly better performance than all other models.
Interpolation | Simple MLP | Optimal MLP | MLP + ECA | STAMNet-Upscale
MSE 4089 2691 2508 2525 2480
MAE 26.42 28.08 21.62 21.35 21.60
R? 0.727 0.903 0.897 0.892 0.925

Table 4. Results for upscaling experiments with molasses (ED) and Chromium. MAE is given in Tn—(;l and MSE

2
is givenin (mm—‘;l ) . Values in bold indicate statistically significantly better performance than all other models.

Cr(VI) | Interpolation | MLP + ECA | STAMNet-Upscale
MSE 5.32x10% | 1.02x10™* 8.92 x 107
MAE 3.31x10° |2.45x10° 2.23x10°

R? 0.9093 0.9508 0.9227

ED Interpolation | MLP + ECA | STAMNet-Upscale
MSE 1.20x10™* | 2.77x 107 2.62x10°5
MAE 2.72x103 | 1.81x10°3 1.80x 1073

R? 0.2937 0.888 0.913

The time series plots for the low and high-concentration upscaling (Fig. 8) reveal slightly
more interesting deviations from the analysis of all test simulations. The low-concentration time
series (Fig. 8a) shows dramatically better performance for the attention-based neural nets when
compared to the simple interpolation. The high-concentration time series (Fig. 8b), on the other
hand, shows relatively small differences between each model. Thus, our results indicate that a

simple interpolation is a generally accurate way to upscale high-concentration RT simulations of
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biomass growth, but not for low-concentration simulations as it results in a large amount of

overprediction of biomass concentrations.
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Figure 8. Biomass time series averaged over low (a) and high-concentration (b) upscaling test simulations.
This figure shows STAMNet-Upscale outperforms simple interpolation and our MLP+ECA architecture,
especially for lowconcentration simulations.

Across all biomass upscaling experiments, our results generally show that compared to
models without attention, STAM can selectively focus on important features in the input,
potentially leading to better performance on tasks that require understanding complex spatial-
temporal relationships. Compared to ECA, which focuses on attention in the temporal dimension,
STAM provides a more comprehensive attention mechanism that considers both spatial and
temporal dimensions. STAM generally performs better than ECA, which indicates the cross-
dimensional attention, which improves feature mapping in both the spatial and temporal
dimensions, is advantageous for the task of upscaling.

6.4.2.2 Molasses and Cr(VI) Upscaling

We further show the strong performance of STAMNet by upscaling RT simulations for the molasses
(electron donor - ED) and Cr(VI) features. We find that STAMNet significantly outperforms the
simple interpolation and MLP+ECA model for ED prediction in the MSE and R? metrics (Table 4).
Furthermore, the MLP+ECA model also significantly outperforms the simple interpolation in all

metrics, which once again shows the benefit of neural architectures, and especially those with
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attention, for the task of upscaling. Specifically, these results show that the benefits of our neural
architectures for upscaling are not restricted to biomass, and can be extended to other features.
The results for Cr(VI) similarly show high upscaling performance for both STAMNet-Upscale and
the MLP+ECA model. Also, in this case, the MLP+ECA model outperforms STAMNet-Upscale in the
R? metric, but performs worse than STAMNet-Upscale for the MSE and MAE metrics (although
none of these differences are significant), indicating that the differences in performance between
STAM and ECA may depend on the particular task. Thus, in addition to providing trained models
for biomass, ED, and Cr(VI) upscaling, we provide multiple frameworks with which future
researchers can train their own upscaling models for specific features they may be interested in.
Although we find STAMNet to outperform our optimized MLP+ECA model, we encourage
researchers to run their own experiments with their data to determine which model works best
for their task.

Similar to our results for the biomass upscaling, we also present spatial and time series
errors for chromium and molasses (Fig. 9). Like all the spatial errors for biomass, we find that
STAMNet-Upscale and the MLP+ECA model outperform the simple interpolation but are not able
to capture the fine-grained details of the spatial distributions for molasses (Fig. 9c) and chromium
(Fig. 9d). For the mean time series comparison, we see STAMNet-Upscale and the MLP+ECA model
perform equally well at molasses upscaling (Fig. 9a). Surprisingly, although the MLP+ECA model
gives a higher R? for Cr(VI) when calculated as the mean over the set of R? values for each time
series, when the R?is calculated from the mean time series, we see STAMNet-Upscale has a slightly
higher R? (Fig. 9b). The simple interpolation performs well for Cr(VI), but not for molasses, further

showing its inconsistent performance compared to that of the attention-based neural nets.
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Figure 9. STAMNet and interpolation performance for (a) molasses time series, (b) chromium time series,
(c) molasses spatial error distributions, and (d) chromium spatial error distributions. STAMNet outperforms
interpolation in the molasses time series and spatial distribution and the chromium spatial distribution, but
it is nearly indistinguishable from the interpolation for the chromium time series.

6.4.3 STAMNet-Upsample Performance
In addition to our investigation of upscaling in the sense of increasing the lateral domain of the
simulation output, we also use another variant of the STAMNet architecture (Fig. 3c) to increase
the resolution of the simulation output, which we refer to as the task of upsampling. We find that
STAMNet-Upsample shows significantly better performance than all other models for the
upsampling task in MSE and MAE, although a simple interpolation gives the best performance for
R? (Table 5). Considering we trained and tested on a smaller number of simulations for the task of
upsampling compared to the task of upsampling, and that we only used homogeneous
permeability fields for the upsampling simulations, it is likely that the upsampling task was not
difficult enough to result in large performance differences between models. Furthermore, some
degree of overfitting on the MSE and MAE during training may have resulted in a model that

focuses more on the spatial aspects of the upsampling task than the average temporal ones.
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Looking at the spatial distributions for STAMNet-Upsample and the interpolation (Fig. 10),
we can see that STAMNet-Upsample does indeed have more accurate spatial approximations
(especially at the domain boundaries). Thus, while it could be argued the simple interpolation may
be more appropriate for tasks that don't care about the accuracy of the spatial distribution, for
tasks where spatial accuracy is important, STAMNet-Upsample is clearly advantageous to simple
interpolation. We also find that the addition of STAM to the optimized MLP improves performance,
but the addition of ECA to the optimized MLP generally decreases performance. These results
contrast those of the upscaling task, where both ECA and STAM were found to improve MLP
performance. As seen by the high R? of all models for the average time series, the task of
upsampling does not result in large differences in the average temporal trends. Thus, ECA, which
uses 1D convolution to improve temporal feature extraction, results in a tiny improvement in R?
(relative to the optimal MLP), but causes a decrease in MAE and MSE due to the extra focus on
temporal features. This trend is not observed in the upscaling results (Table 3), however, as ECA
shows significant improvements to MAE for biomass upscaling. Given the significant differences in
task and input tensors, these differences are likely a result of imperfect training hyperparameters.
Thus, although ECA generally doesn’t perform as well as STAMNet-Upsample for the task of
upsampling, it is possible these results would be different if hyperparameters were individually
tuned for each model, which strengthens our suggestion for future researchers to experiment with

both the STAMNet and MLP+ECA architectures.

Table 5 Results for upsampling experiments. MAE is given in "T:l—(;l and MSE is given in (mol ) .

3
Interpolation | Simple MLP | Optimal MLP | MLP+ECA | STAMNet-Upsample
MSE 73.50 54.45 28.58 29.76 26.22
MAE 1.443 1.557 1.263 1.268 1.238
R? 0.9997 0.9987 0.9984 0.9987 0.9986
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Figure 10. Spatial error distribution of biomass averaged over all test simulations and time steps for the
upsampling task. (a) Ground truth spatial distribution. (b) Ground truth minus output from STAMNet-
Upscale. (c) Ground truth minus simple interpolation. (d-f) Zoomed in versions of a-c. These figures show
the superior spatial performance of STAMNet over interpolation for the task of upsampling, especially near
the boundaries of the domain.

6.5 Conclusions
This study presents STAMNet, a novel deep learning architecture for upscaling and upsampling
reactive transport simulations in the hyporheic zone. Our results demonstrate that STAMNet
outperforms traditional interpolation methods and simpler neural network architectures across
multiple tasks and metrics. STAMNet-Upscale significantly im- proved upon simple interpolation
and optimized MLP models for biomass upscaling, achieving the highest R? (0.925) and lowest
MSE among tested models. Furthermore, the spatiotemporal attention module (STAM)
consistently out- performed efficient channel attention (ECA), indicating the benefits of cross-
dimensional feature refinement for reactive transport modeling. Notably, STAMNet showed
robust performance across different concentration regimes, with particularly strong
improvements over interpolation for low-concentration simulations. The architecture performed
well with other reactive transport variables, showing significant improvements for molasses

(electron donor) upscaling and competitive performance for chromium upscaling. Furthermore,
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STAMNet-Upsample demonstrated superior performance in increasing simulation resolution,
particularly in capturing spatial details more accurately than simple interpolation. By enabling
rapid upscaling and upsampling of simulations, this approach has the potential to accelerate
research in hyporheic zone processes and enhance our understanding of complex subsurface
biogeochemical dynamics. As the field continues to evolve, the integration of advanced deep
learning architectures like STAMNet with domain-specific knowledge promises to unlock new
possibilities in environmental modeling and decision-making.

While STAMNet shows promise for accelerating and enhancing reactive transport
simulations, some limitations should be noted. The current implementation struggles to capture
fine-grained spatial variations in upscaled simulations, instead producing averaged distributions.
Additionally, the model’s performance may vary depending on the specific reactive transport
variable being predicted, as seen in the differences between biomass, molasses, and chromium
results. It’s also important to acknowledge that the study focused on a specific hyporheic zone
scenario, and further testing is needed to confirm generalizability to other subsurface
environments and reactive transport systems. Future research directions should address these
limitations and expand upon the current work. Investigators should explore methods to
incorporate physical constraints or multi-scale approaches to improve the spatial fidelity of
upscaled predictions. Extending the model to handle a wider range of reactive transport variables
and scenarios, including more complex biogeochemical reactions and heterogeneous subsurface
environments, would further enhance its applicability. The integration of STAMNet with physics-
based models to create hybrid approaches that leverage both data-driven and mechanistic insights

is also an exciting avenue for development. Finally, investigating the potential of STAMNet for
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other spatiotemporal prediction tasks beyond reactive transport, such as climate modeling or

ecosystem dynamics, could open up new applications for this innovative architecture.
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Chapter 7: Conclusion and Synthesis of Findings

7.1 Introduction

This dissertation presents a comprehensive exploration of microbe-mediate reactive transport
with a focus on microbial motility, particle tracking, and biomass growth in the hyporheic zone.
Through a combination of experimental observations, physics-based computational modeling,
and deep learning approaches, this work advances our understanding of complex biogeochemical
interactions across multiple scales. Furthermore, this work addresses critical gaps in our ability to
model and predict reactive transport processes in heterogeneous subsurface environments.
Ultimately, each chapter of this dissertation may be used to develop more robust bioremediation

models and experiments.

7.2 Synthesis of Key Findings and Advancements

7.2.1 Advancing Microbial Transport Understanding
The investigation of advection-dominated transport dynamics of pili and flagella-mediated motile
bacteria in porous media (Chapter 2) provides fundamental insights into how different bacterial
species navigate complex flow environments. This work builds upon previous studies of bacterial
motility in porous media [1-11] by explicitly comparing the behavior of different motility
mechanisms under varying flow conditions. The research reveals a critical transition to advection-
dominated transport as flow rates increase, with bacteria exhibiting peritrichous flagella (e.g.,
Paenibacillus) demonstrating superior maintenance of their motility characteristics at higher flow
rates compared to bacteria with pili or monotrichous flagella. Furthermore, this chapter

challenges previous assumptions about bacterial behavior in pore networks by discovering that
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motile bacteria tend to oversample medium-velocity regions, contrary to earlier notions of
preferential sampling in low-velocity zones [3].

These findings carry significant implications for understanding microbial transport in
natural and engineered porous media systems. The observation of differential transport behavior
among bacterial species with varying motility mechanisms suggests that models of microbial
transport in the subsurface must account for species-specific motility characteristics. This
consideration becomes particularly crucial in bioremediation applications, where the transport
and distribution of specific bacterial strains may significantly impact treatment efficacy [4].
Additionally, the identification of advection-dominated transport regimes provides valuable
insights into conditions where simplified transport models may suffice. In high-flow scenarios,
where bacterial motility plays a diminished role, the dispersion coefficient will be almost entirely
a function of the flow speed and porous geometry. In low-flow regimes, the dispersion coefficient
will have less dependence on speed, similar dependence on porous geometry, and much greater
dependence on motility. Thus, the work from this chapter indicates that at low speeds the

dispersion coefficient should also be calculated as a function of motility type.

7.2.2 Enhancing Particle Tracking Methodologies
The evaluation of particle tracking codes for dispersing particles in porous media (Chapter 3) and
the development of DeepTrackStat (Chapter 4) represent significant advancements in our ability
to analyze and interpret experimental data on particle and microbial transport. Through rigorous
analysis, the work of chapter 3 demonstrates that tracking algorithm performance for dispersing
particles is largely dependent on the particle spacing displacement ratio (PSDR), with all methods
exhibiting decreased accuracy at low PSDR values. The research also revealed that traditional

metrics [12] for evaluating tracking performance may significantly underestimate errors in certain
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scenarios, particularly when employing aggressive linking algorithms. Lastly, this chapter
illustrates some of the errors that may have impacted the results from chapter 2, such as the
tendency to miss high-speed particles and therefore underpredict the max speeds and mean
square displacement (MSD). As such, this finding has important implications for the design and
interpretation of microfluidics experiments.

The limitations identified in existing algorithms motivated the development of
DeepTrackStat, a novel deep learning framework for extracting motion statistics from particle
tracking videos. This innovative approach offers substantial advantages over traditional particle
tracking methods [13-17], demonstrating improved accuracy in extracting speed, velocity, and
turn angle distributions, particularly in challenging scenarios involving high-speed and high-
density particle movements. Moreover, DeepTrackStat achieves significantly reduced computation
time compared to classical particle tracking methods, enabling the analysis of larger datasets while
maintaining high precision. Together, Chapters 3 and 4 provide essential tools and knowledge for
improving the extraction of useful information from microfluidic particle tracking experiments, a
crucial task for validating and refining computational models of microbial transport and reactive

processes in porous media [2, 7, 9-11].

7.2.3 Improvements in Reactive Transport Modeling
While each chapter of this dissertation contributes to the advancement of reactive transport
modeling, the contributions manifest in different ways across scales and applications. Chapter 2's
improved understanding of bacterial motility for species with different motility types indicates
potential new avenues for the refinement of bacterial transport models. The advancements in

particle tracking accuracy and methodology presented in Chapters 3 and 4 enable more precise
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parameter estimation for bacterial transport models, ultimately enhancing the accuracy of
reactive transport simulations through improved foundational measurements.

Chapters 5 and 6 represent the most direct applications to reactive transport modeling.
Chapter 5 introduces an experimentally-calibrated physics-based augmentation to PFLOTRAN that
incorporates speed-based decay and temperature-based growth of biomass. Through
comprehensive sensitivity analysis, this work demonstrated that speed-based biomass decay
significantly impacts biofilm development only under specific conditions: when fluid speeds
exceed 10 meters/day or in cases of "weakly cohesive" biofilms with exponential decay
parameters below 0.4. Chapter 6 presents STAMNet, a neural framework for upscaling reactive
transport simulations, which addresses aspects of the long-standing problem of computational
intensity in reactive transport simulations. This innovative approach demonstrates the potential
for deep learning techniques to bridge the gap between detailed process understanding and

practical computational requirements.

7.2.4 Bridging Scales in Reactive Transport Modeling

A fundamental contribution of this dissertation lies in its comprehensive approach to bridging
scales in reactive transport processes, from individual bacterial trajectories to field-scale reactive
transport. The insights gained from microbial motility studies provide a foundation for
understanding how individual bacterial behaviors translate to larger-scale transport patterns.
While these microscale findings were not directly incorporated into the larger-scale models
presented in later chapters, they inform our conceptual understanding of how microscale
processes may influence macroscale outcomes.

The advancements in particle tracking methodologies serve as a crucial bridge between

experimental observations and computational models. By improving our ability to extract accurate
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motion statistics from experimental data, these tools enable better validation and refinement of
both pore-scale and continuum-scale transport models. The broad applicability of these tools,
particularly DeepTrackStat, extends beyond their original design for microfluidics studies. Through
training on diverse simulations, these tools demonstrate utility for analyzing particles under
various motion regimes across multiple scales.

The investigation of hyporheic zone processes integrates understanding from multiple
scales by considering how pore-scale flow dynamics and biomass growth processes manifest in
Darcy-scale reactive transport behavior. The velocity-based biomass decay model represents a
particularly significant achievement in incorporating microscale biofilm dynamics [18] into
continuum-scale reactive transport simulations. STAMNet further advances this multi-scale
integration by directly addressing the challenge of upscaling reactive transport simulations,
demonstrating how machine learning techniques can effectively capture sub-grid scale processes

in large-scale predictions without imposing overwhelming computational demands.

7.2.5 Implications for Environmental Management and Bioremediation

The findings presented in this dissertation have substantial implications for environmental
management and bioremediation strategies. The observation of differential transport
characteristics among bacterial species with varying motility mechanisms suggests that
bioremediation strategies must carefully consider the specific motility traits of target
microorganisms when selecting bacterial strains for bioaugmentation or designing flow conditions
to optimize the distribution of beneficial microorganisms in contaminated aquifers.

The development of DeepTrackStat provides environmental managers and researchers
with a powerful tool for analyzing visual data of moving particles for a variety of scales and flow

conditions, enabling more accurate characterization of contaminant transport behavior and more
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robust modeling of bioremediation processes. Furthermore, STAMNet's capability for rapid large-
scale predictions enables comprehensive Monte Carlo and sensitivity analyses that can support
more informed decision-making in scenarios such as assessing contaminant spread in
groundwater systems under different scenarios, evaluating long-term remediation effectiveness,
and predicting climate change impacts on subsurface biogeochemical cycles.

The insights gained from the hyporheic zone study reveal that speed-based biomass decay
significantly impacts remediation outcomes only under specific conditions of high fluid speed or
weak biomass development. This understanding can inform the optimization of nutrient delivery
and bioremediation strategies based on the identified feedback mechanisms between flow,
nutrient transport, contaminant degradation, and biomass growth. Additionally, the novel insights
into the relationship between biotic and abiotic reduction demonstrate that while abiotic
reduction generally dominates in high-electron-donor environments, biotic reduction plays a

crucial role in determining the spatial distribution of remediation hotspots.

7.3 Limitations and Technical Challenges
The experimental and computational approaches developed in this dissertation, while advancing
our understanding of reactive transport processes, face several important limitations. The
bacterial motility studies, though revealing important relationships between motility mechanisms
and transport behavior, were necessarily limited to a subset of bacterial species and
environmental conditions. A more robust study would investigate transport for a wider variety of
flow rates, and the simplified porous media geometries used in experiments, while providing

valuable insights, cannot fully replicate the complexity of natural sediments.
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Technical limitations in particle tracking methodologies persist despite the advances made
through DeepTrackStat. The fundamental trade-off between tracking accuracy and computational
efficiency remains a challenge, particularly when dealing with high particle densities or rapid
motion. While DTS successfully addresses many limitations of traditional tracking approaches, its
reliance on training data means that performance may degrade when encountering particle
behaviors significantly different from those represented in the training set. In addition, DTS is only
designed to extract speed, velocity component and turn angle statistics, meaning researchers who
want to derive more complex statistics from the raw trajectories will still need to resort classical
particle tracking methods.

The PFLOTRAN augmentation faces limitations related to the simplifying assumptions
inherent in continuum-scale modeling. The speed-based decay model, while incorporating
important microscale processes, necessarily homogenizes complex spatial heterogeneities in
biofilm structure and bacterial behavior. The identified threshold values for significant speed-
based decay effects may vary in natural systems with more complex geometry and chemical
conditions. Furthermore, the model's treatment of biofilm strength as a uniform parameter may
not adequately capture the spatial and temporal variability in biofilm properties observed in
natural systems. Finally, the equation used to model speed-based biomass decay used fitting
parameters for calibration, but a more robust method would derive this equation from
fundamental physical principles such as the continuity equation and/or conservation of mass.
STAMNet's current implementation, while demonstrating significant potential for upscaling
reactive transport simulations, faces constraints in its generalizability. The framework's fixed input
and output dimensions limit its direct application to different spatial scales or problem

geometries. The requirement for consistent tensor shapes during training creates challenges for
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developing truly scale-agnostic models. Additionally, computational resources remain a limiting
factor across multiple aspects of this work, particularly in the generation of training data through
high-resolution reactive transport simulations and the validation of model predictions against

experimental data.

7.4 Future Research Directions

Several promising avenues for future research emerge from the findings and limitations identified
in this dissertation. Future studies of bacterial motility should expand to investigate a broader
range of bacterial species under varying environmental conditions. A particularly promising
approach would involve the development of experimental systems using genetically engineered
bacterial strains that differ only in motility mechanisms. Such controlled comparisons would
provide crucial insights for developing more accurate transport models while eliminating
confounding variables present in cross-species comparisons.

The advancement of particle tracking capabilities requires development of more
sophisticated deep learning architectures that can maintain accuracy while reducing
computational demands. Future iterations of DeepTrackStat could incorporate adaptive training
approaches to handle a broader range of particle behaviors and experimental conditions.
Extension to three-dimensional tracking applications represents a particularly important direction,
as many natural systems exhibit complex three-dimensional flow patterns and bacterial behaviors
that cannot be fully captured in planar analysis.

The reactive transport modeling framework could be enhanced through incorporation of
additional biogeochemical processes and improved representation of spatial heterogeneity.

Future work should focus on developing more sophisticated approaches for representing biofilm
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mechanical properties and their spatial variation within continuum-scale models. Integration of
advanced imaging techniques with reactive transport modeling could enable better
characterization of biofilm spatial structure and its influence on local flow fields and reaction rates.
STAMNet's capabilities could be significantly expanded through architectural modifications
enabling true scale and feature agnosticism. Development of training strategies that can handle
variable tensor shapes, potentially through implementation of adaptive neural network
architectures or novel batching approaches, would greatly enhance the framework's applicability.
Creation of a feature-agnostic version would require extensive training on diverse reactive
transport scenarios, potentially utilizing transfer learning approaches to efficiently capture
common patterns across different chemical systems.

Integration of these various research directions with emerging technologies represents a
particularly promising avenue for advancement. Real-time sensing networks could provide
validation data for model predictions while enabling adaptive optimization of bioremediation
strategies. Climate change impacts on subsurface biogeochemical processes could be better
understood through application of these modeling frameworks to scenarios incorporating
projected environmental changes.

7.5 Concluding Remarks
This dissertation advances our understanding of reactive transport processes across multiple
scales through the integration of experimental observations, computational modeling, and
innovative deep learning techniques. The multifaceted approach developed here spans from
microscale observations of bacterial motility to field-scale predictions of biogeochemical
processes, providing a comprehensive framework for improving predictions of microbe-mediated

reactive transport in heterogeneous porous media.
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The development of novel tools such as DeepTrackStat and STAMNet, coupled with
mechanistic insights into microbial transport and hyporheic zone processes, provides a robust
framework for improving predictions of reactive transport in heterogeneous porous media. These
advancements have significant implications for environmental management and bioremediation,
offering the potential for more informed decision-making and optimized remediation strategies.
The challenges and opportunities identified point toward an increasingly integrated approach to
understanding and modeling reactive transport processes. Future advances will likely emerge from
the confluence of high-resolution experimental techniques, sophisticated data analysis methods,
and innovative modeling frameworks. Success in these endeavors will require continued
collaboration across disciplines, from molecular biology to computer science, as well as sustained
investment in both experimental and computational infrastructure.

As we continue to face global challenges related to water quality and ecosystem health,
the approaches developed in this dissertation offer promising avenues for advancing our
understanding and stewardship of critical environmental interfaces. By bridging scales and
integrating diverse scientific approaches, this work lays a foundation for more comprehensive and
predictive models of coupled hydrological, geochemical, and biological processes in complex

environmental systems.
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Supplementary Figures

107 5
102 =
®
e ®
Q¥ o
1077 3 . 3
. '..
10~* = m Acidovorax » : =
¢ Geobacter 2
[ ®Paenibacillus ¢ I:!
—5 Ll ol ol N S
10 107! 10° 10 102

Speed (pm/s)
Supplementary Figure 1. Speed PDF for no-flow experiments in the high porosity geometry (grain
diameter = 40 mm, pore length = 20 mm).

Supplementary Figure 2. Whole-mount transmission electron microscopy (TEM) images of
Acidovorax JHL-9 (unpublished images from [22], courtesy of Alice Dohnalkova). The whole-mount
images were prepared by adding JHL-9 liquid culture to a copper electron microscopy grid and
examining by TEM at 200 kV using a JEOL 2010 high-resolution TEM.
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Supplementary Figure 3. Sample trajectories for all PT codes for selected high-PSDR bimodal and unimodal
simulations. Each line corresponds to a unique trajectory (with random colors used to show the contrast

between individual trajectories). For these high-PSDR simulations, all PT codes besides TP show near-perfect
replication of the ground truth trajectories.
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Supplementary Figure 4. Speed-angle joint probability density difference heatmaps for the unimodal
simulation. Speeds determined from particle tracking (S,) are normalized by the mean speed of the
respective simulation (Ssim). Red corresponds to an underprediction of probability density, blue corresponds
to an overprediction of probability density, and white corresponds to an accurate probability density
prediction within the speed-angle feature space. These results show strong performance for TM-Kalman
and V-TrackMat, slightly weaker performance for TM-LAP, and bad performance for TP.
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Supplementary Figure 5. All MSDs. Simulated particle speeds increase going from left to right, and particle
densities increase going from top to bottom. The bottom right corner represents the lowest-PSDR
simulation. The speed values for each column are given as a range because the unimodal simulations always
have lower mean speeds than the bimodal simulations. The bimodal MSDs are shown by dashed lines, and
the unimodal MSDs are shown by dotted lines. These figures confirm trends present in the other results -

TP performs the worst, and other algorithms start to fail at S, > 11.3.
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Supplementary Figure 6. All C,. Simulation speed increases from left to right, and particle density increases
from top to bottom. The bottom right corner represents the lowest-PSDR simulation. Autocorrelations from
the heterogenous simulations are dotted and slightly brighter colored than the bimodal simulations. The
bimodal simulations show a periodicity in autocorrelation that is generated due to the periodic converging
and diverging flowpaths of the bimodal geometry. The unimodal simulations show a clear trend of
decorrelation over time. All PT codes show better performance for the unimodal simulations, although this
is potentially due to differences in the mean speeds of the simulations. In terms of PT performance, these

results follow the same general trends as the MSDs.
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Supplementary Figure 7. Ensemble weightings for the calibrated and uncalibrated SSMs
and SC. Each SSM is comprised of several models and the specific ensemble used to
make a prediction is determined by the output of the SC.
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Supplementary Figure 8. Results from PIPs (https://github.com/aharley/pips). Some
amount of tracking seems to occur, but it is not useful for the task of motion statistic
extraction. Further research should seek to fine tune this method (and other similar
optical flow methods) to see if the models offer any underlying advantages for transfer
learning.
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Appendix
Al - Pseudocode for simple reactive transport simulator

## Initialize variables and parameters

## Initialize grid dimensions: nx, ny, nz

## Initialize time steps: nt, dt

## Initialize spatial steps: dx, dy, dz

## Initialize arrays: C[nx][ny][nz], 8[nx][ny][nz], v[nx][ny][nz], K[nx][ny][nz], R[nx][ny][nz]

## Where Cis the concentration of the species, 8 is the water content, v is the pore water velocity,
K is the ## hydraulic conductivity, and R is a reaction source/sink term that represents the chemical
reactions with ## other species

## Set initial/boundary conditions for C, theta, v

## Main time-stepping loop
fort=1tont:
## Solve Richards equation for water content
for x=1to nx:
fory=1tony:
forz=1tonz:
6[x][yl[z] = solve_richards_equation(8[x][y][z], K(8))
update_hydraulic_conductivity(6[x][y][z])

## Compute velocities using Darcy's law
for x=1to nx:
fory=1tony:
forz=1tonz:
v[x]ly][z] = compute_darcy_velocity(6[x][y][z], ...)

## Solve Advection-Dispersion-Reaction Equation for concentration
for x=1to nx:
fory=1tony:
forz=1tonz:
CIx][y][z] = solve_ADE(C[x][y][z], v[x][yl[z], €[x]ly][z], RIx][y][z], D, ...)

## Apply boundary conditions
apply_boundary_conditions(C, 6, v)

## Output results at specified intervals
if t % output_interval == 0:
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output_results(C, 8, v, t)

##t End of simulation
finalize_output()

## Helper functions (to be implemented separately)

IK(®) ..
P D):

## Solve Richards’ equation based on water content, hydraulic conductivity, and dispersion

function solve_richards_equation(8[x][y][z], K(6),

function update_hydraulic_conductivity(6):
## Update hydraulic conductivity based on water content

function compute_darcy_velocity(¢, K, Z_’; ):

## Compute velocity using Darcy's law
function solve_ADE(C, v, 8, R, D):
## Compute ADE as a function of concentration, pore water velocity, water content, chemical

reactions, and dispersion

function apply_boundary_conditions(C, 9, v, ¢, K):
## Apply appropriate boundary conditions

function output_results(C, 6, v, t, ¢, K):
## Output or save results at the current time step
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