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• STAMNet allows for rapid upscaling of reactive transport simulations5

of bioremediation in the hyporheic zone.6

• The spatiotemporal attention module (STAM) uses cross-dimensional7

relationships to extract complex features and is shown to improve per-8

formance more than efficient channel attention methods.9

• STAMNet shows strong performance for upscaling of biomass, electron10

donor, and chromium concentrations.11

• STAMNet-Upsample uses the STAM architecture to rapidly increase12

simulation resolution with high accuracy.13
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Abstract20

Reactive transport (RT) simulations are important tools for understanding
and predicting phenomena in the subsurface. However, RT is computation-
ally intensive and complex simulations can be numerically unstable. Here,
we present STAMNet, a low-parameter attention-based suite of neural nets
that can upscale and upsample reactive transport simulations, applied to
example problem of bioremediation in the hyporheic zone. We show that a
simple MLP offers 30x speedup over standard multiphysics RT simulations
and can accurately (≈ 90% R2) predict the output of multiple variables of a
1x20 meter RT simulation by using the output from a 1x2 meter simulation
as input. We add efficient channel attention to our optimized MLP which
significantly improves the mean average error but doesn’t affect the R2. We
further develop a novel spatiotemporal attention module (STAM), which re-
sults in improvements both in mean square error and R2 (92.5%). Finally,
we present a network architecture that utilizes STAM to accurately (99.9%
R2) upsample simulations in two dimensions. Specifically, our model allows
for the 2x upsampling of simulations in the x and y dimensions to convert
a coarse-grained input into a fine-grained output. These models have poten-
tial use for Monte-Carlo-style investigations of bioremediation and the work
presented serves as a proof-of-concept for accurate prediction of large sets of
spatiotemporal outputs.
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1. Introduction23

In the vast realm of environmental science, the hyporheic zone (HZ)24

stands out as a complex interface that has captured the attention of re-25

searchers for decades [1, 2, 3]. This subsurface region, generally defined as26

the interface between river water and groundwater, hosts a myriad of com-27

plex interactions [4], with biofilms serving as a central character influencing28

broader hydrological and geochemical cycles [5].29

Multiphysics simulators that use analytical and numerical methods to30

solve systems of equations that describe hydro-biogeochemical interactions in31

the subsurface environments, also known as reactive transport (RT) simula-32

tors, such as PFLOTRAN [6], STOMP [7], and CrunchFlow [8], are generally33

considered the gold standard for simulations of phenomena in the HZ. How-34

ever, large scale RT simulations, and Monte-Carlo-type investigations of RT35

simulations, have high computational complexity and cost which are sensitive36

to convergence criteria [9, 10] causing numerical instability and challenges in37

supporting hydro-biogeochemical research efforts.38

Several recent studies in the field of computer science have shown that39

accurate multi-physics simulation emulation is possible with deep learning40

[11, 12, 13, 14, 15]. Thus, to alleviate the common shortcomings of RT sim-41

ulators, some studies have attempted to apply these emulation frameworks42

to RT data [16, 17, 18, 19, 20, 21]. Laloy and Jacques presented some of43

the earliest studies that looked into RT emulation with deep learning. They44

found deep neural networks (DNNs) outperform polynomial chaos expansion45

networks for the prediction of a target RT variable given some input variables46

of the RT timeseries. Although emulation is still a popular topic, much of47

the current research in this domain also seeks to upscale micro and pore-scale48

models to the macro/continuum scale. Wang and Battiato (2024) provide a49

comprehensive framework to upscale RT in fracture-matrix systems. Their50

framework uses a combination of traditional RT algorithms with a recur-51

rent neural network (RNN) to capture the impact of small-scale features,52

which they show results in improved accuracy compared to a pure macroscale53

model. You et al. (2024) used convolutional neural networks (CNNs) to up-54

scale pore-scale simulations to continuum-scale simulations. They found that55

the effective surface area and effective diffusion coefficient could be predicted56

with high accuracy, but permeability is difficult to predict. These frame-57

works represent significant advances in the field of RT modeling, although58

they suffer from a lack of easy integration with current popular methods,59
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and are constrained in their scope. General models that can be easily im-60

plemented would increase access of reactive transport simulation tools to a61

larger community of researchers.62

In this paper, we present STAMNet, a deep-learning-based method for63

the upscaling and upsampling of RT simulations of biomass growth in the64

HZ. We chose to model biomass growth in the hyporheic zone due to the65

complexity of the simulations and its importance for many biogeochemical66

functions they serve. Furthermore, simulations of biomass growth result in67

outputs at large scales that could be very different than outputs at small68

scales, which necessitates a more careful upscaling than a simple interpola-69

tion or polynomial fit. Furthermore, we consider our simulations of biomass70

growth in the hyporheic zone to be a proxy for general reactive transport71

modeling, since the biomass growth simulations take advantage of most of72

the modeling capabilities in PFLOTRAN. In addition to biomass growth, we73

use STAMNet to upscale chromium and molasses, highlighting our frame-74

work’s overall capabilities for the upscaling of bioremediation simulations.75

We test the performance of an optimized MLP, the MLP + efficient chan-76

nel attention, and the MLP + our spatiotemporal attention module, STAM,77

which we find to generally outperform the other models. We test our upscal-78

ing method to predict the spatiotemporal output for a 1x20 meter simulation79

given a 1x2 meter simulation as input. This model allows for a 30x speedup80

in the generation of large-scale simulations with an R2 of the predicted mean81

time series of 92.5%. We also devise an optimized linear architecture for the82

task of upsampling, which takes a 1x2 meter simulation with a resolution of83

100 voxels/m as input and outputs a 1x2 meter simulation with a resolution84

of 400 voxels/m.85

2. Methods86

This study uses multiphysics simulations to explore biomass growth in the87

HZ, and deep learning models to upscale and upsample these simulations. In88

this section, we describe the boundary conditions and parameters used for89

our simulations, and the model architectures and training/testing procedures90

used for our upscaling and upsampling frameworks.91
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2.1. Simulations of the Hyporheic Zone92

2.1.1. General Description of Simulations93

Our simulations are based in PFLOTRAN, a multi-physics reactive trans-94

port simulator developed by multiple national laboratories [6]. PFLOTRAN95

represents a state-of-the-art computational framework for simulating cou-96

pled subsurface flow and reactive transport processes across multiple spatial97

and temporal scales. This massively parallel reactive transport code inte-98

grates sophisticated numerical methods to resolve multi-phase and hydro-99

biogeochemical interactions. The code’s architecture enables the simula-100

tion of various subsurface processes, including density-dependent flow, vari-101

able saturation conditions, and non-isothermal phenomena, alongside com-102

prehensive biogeochemical reactions such as aqueous complexation, mineral103

precipitation/dissolution kinetics, surface complexation, ion exchange, and104

microbially-mediated transformations. As discussed in the introduction, we105

seek to use this reactive transport simulator to model biomass growth in the106

hyporheic zone. To this end, we have specifically adapted the Chrotran [22]107

version of PFLOTRAN to represent bioremediation in the hyporheic zone at108

the Darcy scale. Chrotran defines biomass growth as a function of electron109

donor (ED) concentration through simple Monod kinetics. It uses biotic and110

abiotic reactions to model Cr(VI) reduction, defines a mobile-immobile mass111

transfer system for biomass and ED, and allows for bioclogging modeling112

capabilities via the dependence of porosity and permeability on biomass con-113

centration. For a full description of the biomass growth model, please refer114

to the original Chrotran paper.115

The simulations described in this paper were created for the purpose of116

modeling certain interactions in the hyporheic zone. We simulate different117

flow conditions, permeability conditions, and concentration inputs to train118

our models on general representation of bioremediation simulations in the119

hyporheic zone. The simulations are not resource limited – simulations with120

high concentration of nutrients allowed for relatively linear biomass growth121

throughout the time frame of the simulations (up to 228 days) whereas122

biomass growth leveled off more towards the end of the simulations for sce-123

narios with low concentration of nutrients,. We chose to not investigate124

nutrient-limited scenarios because we observed less differences between small125

scale and large scale simulations in cases of nutrient limitation, meaning a126

model that allows mapping between the two would be less useful. Further-127

more, the primary purpose of our upscaling model (STAMNet) is to provide128
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a means for rapid generation of bioremediation simulations for a variety of129

input conditions. In most cases of bioremediation, biomass growth is stimu-130

lated through the injection of nutrients (i.e., an electron donor), so our focus131

on high-nutrient simulations enhances the model’s applicability to bioreme-132

diation.133

2.1.2. Boundary Conditions134

For the baseline, we simulate a 1 meter (in vertical, or direction of hy-135

porheic flow) by 2 meter longitudinal (in direction of river/groundwater flow)136

slice of a synthetic hyporheic zone represented by 100 by 200 voxels (dx = dy137

= 0.01 m). The top and bottom boundaries (1 m difference) respectively rep-138

resent the surface and bottom-HZ pressures (which controls the amount and139

direction of vertical flow), and the left and right boundaries (2m difference)140

represent the pressure gradient in the longitudinal direction, thus control-141

ling the vector of groundwater flow (also referred to here as the horizontal142

flow). The horizontal pressure gradient is constant over the duration of any143

given simulation, and the vertical pressure gradient for any given simulation144

is derived from three different sets of in-situ hyporheic flux data [23, 24, 25]145

(Fig. 1). The ”10x scale simulation” represents a 1 meter by 20 meter slice146

of the hyporheic zone with the same resolution as the baseline simulations.147

Importantly, we note here that the pressure boundary conditions are the148

same for each pair of baseline and 10x simulations. This means the pressure149

gradient changes between a baseline simulation and its respective 10x sim-150

ulation. This constant pressure boundary framework is useful for extending151

simulations of bioremediation in which a specified pressure is established due152

to stimulant injection, although we also recognize that an upscaling method153

for constant pressure gradient would be beneficial for general studies of the154

hyporheic zone.155

As discussed in further sections of the methods, all simulation variables,156

including the horizontal and vertical pressure gradients, take on different157

values for different simulations. From these base time series, we introduce158

random variations (large variations for the ”high speed” time series and small159

variations for the other time series in Figure 1) to increase the variability in160

potential flow conditions for our models to be trained on. The base set of161

pressure gradients for the horizontal flow was determined a range of realistic162

groundwater flow rates. Both horizontal flow (Vy) and vertical flow (Vx), and163

transport, are regulated by Dirichlet boundary conditions.164

The primary motivation of this study is to develop upscaling and upsam-165
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Figure 1: Different flow boundary conditions used in this study. Pressure time series
were calculated from in-situ measurements of hyporheic flux ([23, 24, 25]). The gaining
boundary conditions represent flux from the groundwater to the surface water, and losing
boundary conditions represent flux from the surface water to the groundwater.

pling methods for RT simulations (specifically in the context of bioremedia-166

tion) using deep learning (Fig. 2). Thus, we generated pairs of simulations167

for training that are identical in every way except scale (for upscaling) or168

resolution (for upsampling). As discussed above, the baseline simulations169

represent a 1 meter by 2 meter slice of the HZ. For the upscaling task, all170

models use the baseline 1x2 meter simulation as input to predict a 1x20171

meter simulation. For the upsampling task, all models use the baseline 1x2172

meter simulation with dx = dy = 0.01 m as input to generate a 1x2 meter173

simulation with dx = dy = 0.005 m. All upscaling simulations ran for 228174

days (114 timesteps) and all upsampling simulations ran for 86 days (43 time175

steps). It should be noted that for the gaining and losing simulations the176

in-situ hyporheic flux data (Fig. 1) only extended to 170 days. We therefore177

applied constant flow boundary conditions to the last 58 days. The upscaling178

simulations were also different from the upsampling simulations in that they179

are based on heterogeneous permeability distributions whereas the upsam-180

pling simulations contain homogeneous permeability distributions. Sample181

permeability fields for the upscaling simulations are given in Figure 3.182

2.1.3. Simulation Variables183

To train and test our model on a large variety of simulations, we added184

random variations to all variables of the simulations. The primary simulation185

variables, as well as their voxel-specific min, max, and mean values across186

all simulations, are given in Table 1. The average spatial distributions (in187

time and across all simulations) of the output features of the 1x2 meter188
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a. b.

Figure 2: Sample ground truth snapshots of the 1x simulation (a) and 10x simulation (b)
outputs. From top to bottom, the snapshots represent normalized biomass concentrations
at t = 40, 80, 120, and 160 days. The primary motivation of this work is to provide a
model that allows accurate mapping from 1x to 10x.

Figure 3: Sample heterogeneous permeability distributions (at t=0) used in simulations
featured in this study. Heterogeneous permeability fields were used in the simulations
generated to train and test our upscaling models, but for the case of our upsampling
models, homogeneous permeability fields were used.

Table 1: Description of variables and their ranges of possible voxel-specific values used
in the simulations. From left to right, these variables represent biomass, electron donor
(molasses), and chromium concentrations, horizontal velocity, vertical velocity, pressure,
temperature, porosity, permeability, biomass crowding parameter, and biomass growth
parameter.

Var B ED Cr(VI) Vy Vx P T ϕ k α λb

Units mol
m3

mol
L

mol
L

m
hr

m
hr Pa ◦C - m2 - -

Min 1e-10 1e-20 1e-20 -632 -486 -1214 4.8 1e-4 1e-15 0.5 1e-5

Max 765 5.5e-3 7.6e-3 671 651 7099 24.9 0.6 1.1e-9 3.0 1e-4

Mean 58 8.1e-6 1.4e-5 -5.8-2 -1.4e-2 786 11.5 0.13 2e-10 2.8 1e-5
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Figure 4: Mean spatial distributions for all simulations for (going from left to right and top
to bottom) Vx (Darcy velocity in the vertical direction, measure in meters/hr), Vy (Darcy
velocity in the direction of flow parallel to the river), pressure (Pa), temperature (◦C),
porosity, permeability (m2), biomass (mol/m3), molasses (the electron donor, measured
in mol/L), and Cr(VI) (mol/L).

upscaling simulations are shown in Figure 4. Molasses, biomass, and Cr(VI)189

all have similar distributions due to their coupling via chemical equilibria.190

In addition to the features listed in Table 1 and Figure 4, less consequential191

features that varied between simulations included Sc, Sd1, and λc, which can192

all be classified as biomass growth parameters.193

2.2. Deep-Learning-Based Upscaling194

2.2.1. Model Architectures195

Our initial model selection process was to look for published architectures196

that have been shown to be effective for spatiotemporal data [26, 27, 28].197

However, our input and output tensors have shape [b, t, h, w], where b is198

batch size, t is the temporal dimension, and h and w are spatial dimensions.199

Given the irregular shape of our inputs ([b, 114, 100, 200]), and the large200
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shape of our outputs ([b, 114, 100, 2000]) for the upscaling task, we found that201

the available spatiotemporal models, which are often used for classification202

or object detection/tracking in video data, either were too large, or would203

not work well with our input shape. Thus, we moved to a smaller and204

simpler MLP-based structure of our own design (Fig. 5a). This architecture205

takes in a 4D input (including batch size) and passes it through a series of206

linear layers with nonlinear activation functions to progressively increase the207

size of the final dimension to the desired number. The best number and208

sizes of linear layers, and the best activation function, were determined via209

automated hyperparameter tuning with Optuna [29]. After optimizing the210

structure of the MLP, we used ablation experiments with different variations211

of the first layer to determine the best method for initial upscaling.212

For both the upscaling and upsampling models, we also investigate the213

impact of attention on model performance. Specifically, we integrate efficient214

channel attention (ECA) [30], and a novel attention method (STAM), into the215

optimized MLP structure after the first layer (Figs. 5b & 5c). Our efficient216

channel attention method uses 1D convolution in the temporal dimension,217

allowing the model to focus on more relevant temporal features. STAM uses218

convolutions in multiple dimensions (fully described in section 2.2.2) to im-219

prove focus on task-relevant spatial and temporal features. The resulting220

architecture with the inclusion of STAM is called STAMNet. For the rest221

of the paper, we refer to the upscaling version of STAMNet as STAMNet-222

Upscale, and the upsampling version of STAMNet as STAMNet-Upsample.223

STAMNet-Upsample has a different architecture than STAMNet-Upscale be-224

cause the task of upsampling requires a doubling in size for both of the spatial225

dimensions (Fig. 5c). At a basic level, STAMNet-Upscale increases the last226

spatial dimension by 10x, whereas STAMNet-Upsample increases both spa-227

tial dimensions by 2x.228

2.2.2. Spatiotemporal Attention Module (STAM)229

The STAM architecture (Fig 6) applies attention across multiple dimen-230

sions of the input tensor. It consists of four main branches (M1 - M4 from231

top to bottom) that process the input in different permutations, allowing the232

network to capture dependencies across various dimensions.233

The four attention branches can be summarized as follows - M1 processes234

the input along the temporal dimension through convolutional layers and235

reduces the size of the width dimension through a linear layer, which results236

in an attention map of shape [b, t, h, 1]. M2 processes the input along237
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Linear + LeakyReLU

Linear + LeakyReLU

Input shape: [b, t, h, w]

[b, t, h, 10w]

[b, t, h, 40w]
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Linear

Linear + LeakyReLU

[b, t, h, 10w]

[b, t, h, 10w]

Linear + LeakyReLU

[b, t, h, 10w]

b.

Linear + LeakyReLU

Linear + LeakyReLU

Input shape: [b, t, h, w]

[b, t, h, 10w]

[b, t, h, 40w]

[b, t, h, 10w]

Linear

Linear + LeakyReLU

[b, t, h, 10w]

[b, t, h, 10w]

Linear + LeakyReLU

[b, t, h, 10w]

STAM + LeakyReLU

[b, t, h, 10w]

c.

Linear + LeakyReLU

Linear + LeakyReLU

Input shape: [b, t, h, w]

[b, t, h, 1200]

Linear

Linear + LeakyReLU

Linear + LeakyReLU

STAM + LeakyReLU

[b, t, h, 1200]

Linear + LeakyReLU

[b, t, 800, 2w]

[b, t, h, 2w]

[b, t, 2h, 2w]

[b, t, 2h, 2w]

[b, t, 2h, 2000]

Figure 5: Model architectures for the optimal MLP (a), STAMNet-Upscale (b), and
STAMNet-Upsample (c). Each block represents an intermediate output stage, and the
arrows represent the layers of the model. The optimal MLP (a) and STAMNet-Upscale
(b) take inputs of shape [b, t, h, w] and return outputs of shape [b, t, h, 10w]. STAMNet-
Upsample takes inputs of shape [b, t, h, w] and returns outputs of shape [b, t, 2h, 2w].
STAM is a modular attention method that returns an output with the same shape as the
input. The architecture of STAM is given in Figure 6. For STAMNet-Upsample (c), per-
mutations are used after the 2nd and 4th linear layers to have the appropriate dimensions.
This model takes an input of shape [b, t, h, w] and gives an output of shape [b, t, 2h, 2w].
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114 x 100 x 2000

Final Output

32 x 100 x 2000
114 x 100 x 2000

114 x 100 x 1

2000 x 100 x 114

128 x 100 x 114

2000 x 100 x 114
1 x 100 x 2000

100 x 114 x 2000
64 x 114 x 2000
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114 x 100 x 1
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Input

Conv2d + LeakyReLU

Linear

Attended Feature Map

Figure 6: Architecture of the Spatiotemporal Attention Module (STAM). The model con-
sists of four separate attention arms (M1-M4 from top to bottom). Each attention arm
has two 2D convolutional layers and one linear layer followed by sigmoid activation, then
multiplication and addition with the original input. The attention arms differ in their
shapes, which results in feature maps that are able to capture complex cross-dimensional
relationships. The attended feature maps from each attention arm are then averaged,
passed through a sigmoid layer, multiplied by the input and finally added to the input to
get the final output of the modular attention method.
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the width dimension through convolutional layers and reduces the size of238

the time dimension (or the horizontal length being upscaled), which results239

in an attention map of shape [b, 1, h, w]. M3 processes the input along240

the height dimension and results in an attention map of shape [b, t, h, 1],241

and M4 processes the input along the temporal dimension and results in an242

attention map of shape [b, t, 1, w]. M3 has a similar structure to M1 (and243

the same output shape) except it processes the height dimension through244

convolution instead of the weight dimension. Each branch follows a similar245

pattern: Conv2D (5x5) → LeakyReLU → Conv2D (1x1) → LeakyReLU →246

Linear → Sigmoid. The output of each branch is multiplied with the input247

and the resulting product is added back to the input, creating two levels of248

residual connections. The outputs from all branches are then averaged and249

passed through a sigmoid activation function and multiplied and then added250

to the input to get the final attention map, thus creating additional residual251

connections.252

STAM incorporates several architectural features that enhance its ability253

to map spatiotemporal relationships. By processing the input tensor along254

different dimensions, it captures complex spatial-temporal dependencies that255

simpler attention mechanisms or non-attentive models might overlook. The256

combination of 5x5 and 1x1 convolutions enables STAM to integrate both257

local and global context within each dimension [31, 32, 33]. Through residual258

connections and a final aggregation step, the model adaptively refines fea-259

tures, highlighting important patterns while attenuating less relevant infor-260

mation [34, 35]. The incorporation of LeakyReLU activations and dropout261

(in M2) introduces non-linearity and regularization, potentially enhancing262

the model’s generalization capabilities [36]. Furthermore, by processing the263

input through different permutations, STAM generates complementary at-264

tention maps, effectively capturing diverse data patterns [37]. Lastly, the265

addition of the input to the attention-weighted features preserves original266

information while facilitating the learning of cross-dimensional representa-267

tions, thus providing a comprehensive approach to spatiotemporal feature268

extraction and refinement.269

2.2.3. Training, Validation and Testing Process270

Although the RT simulations contain multiple output features (Fig. 4),271

we chose to focus on upscaling biomass, Cr(VI), and molasses. All other272

variables either have little variation between 1x and 10x scale simulations273

(such as temperature and pressure) or can be easily upscaled through physics-274
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based methods (such as flow [38, 39, 40] and permeability [41]. With about275

48 GB of VRAM, models could be developed to upscale all three variable at276

once. However, we were restricted to 24 GB of VRAM, and at this amount277

of VRAM we weren’t able to effectively train multi-feature models. Thus, we278

trained a suite of models that separately upscale our three target variables.279

For the upscaling task, 48 pairs of simulations were used for training, 8280

pairs of simulations were used for validation, and 13 pairs of simulations were281

used for testing. Validation scores were used to optimize hyperparameters282

and determine layer placement within STAMNet. Once the best model archi-283

tectures were determined through hyperparameter optimization and ablation284

studies, the validation data was also used for training, resulting in 56 pairs285

of training simulations and 13 pairs of testing simulations for the final cal-286

culation of scores. We used the AdamW optimizer, dropout of 0.2 after the287

first linear layer (or after the attention layer for models with attention), and288

a learning rate (lr) between 1.6e-4 and 4.6e-4 with a cosine annealing warm289

restarts scheduler. For biomass upscaling we used a lr of 1.6e-4 and trained290

for 25 epochs, for biomass upsampling we used a lr of 4.6e-4 and trained for291

900 epochs, and for ED and CR(VI) upscaling we used a lr of 3.0e-4 and292

trained for 110 epochs. The number of epochs used for each feature was293

determined based on when the validation set stopped showing improvement.294

For all biomass upscaling experiments, we trained and tested each model type295

14 times and report the averages of each performance metric (MSE, MAE,296

and R2). Each metric is calculated between all elements of the output tensor297

(x) and the ground truth (y). For example, the MAE is the sum of errors298

between each element of x and y divided by the number of elements in x and299

y. We also plot the mean time series and spatial distributions (over all sim-300

ulations) for each model to provide a visual understanding of the prediction301

errors. Specifically we use time series to investigate the average temporal302

distributions of the predictions of biomass, molasses (ED), and chromium303

for a simple interpolation model, an MLP+ECA model, and our STAMNet304

model. The spatial distributions are presented in two ways. The blue-green-305

yellow spatial distributions show the absolute concentrations of the feature306

in question, while the blue-white-red spatial distributions show the difference307

between the ground truth and the prediction for that particular model. For308

this visual analysis, we use a simple ensemble of the best-scoring variations309

of each model.310

For the upsampling task, 40 pairs were used for training, 8 for validation,311

and 12 for testing. After optimal model structures were determined, the 8312
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simulation pairs used for validation were included in the training set, resulting313

in a final 48 simulation pairs for training and 12 simulation pairs for testing.314

All results for the upsampling task are a comparison of the average of 8315

separately trained and tested models. For both upscaling and upsampling,316

the loss function used for training was MSE + 0.6×MAE, which was used317

over a standard MSE loss function as we found that only using MSE tends318

to result in a higher degree of overfitting. Furthermore, we found Huber loss319

to not weight the MAE strongly enough, which resulted in decreased MAE320

and R2 scores.321

3. Results and Discussion322

3.1. Ablation Experiments323

To determine the best simple method of upscaling, we experimented with324

three model variations (Table 2). The structure of the linear model is shown325

in Figure 5a. This structure was determined through optimization of valida-326

tion scores via Optuna. In the linear model, the first layer is a linear layer327

that increases the size of the final dimension of the input by 10x. To reduce328

the number of parameters, or have roughly the same number of parameters329

with a deeper first layer, we tried to replace the first linear layer with a 10x330

interpolation layer and a 20x interpolation layer. Since simple interpolation331

often allows for reasonably accurate upscaling, the interpolation scheme im-332

plemented here is expected to be a parameter-efficient way to upscale the333

final dimension. The 10x interpolation layer takes the input of shape [b, t,334

h, w] and outputs a tensor of shape [b, t, h, 10w], while the 20x interpola-335

tion layer takes the same shape of input and outputs a tensor of shape [b,336

t, h, 20w]. Thus, the interpolation 10x model has the same structure as the337

linear model besides the 1st layer, which is instead a 10x repeat interleave338

layer. Similarly, the 20x interpolation model has an initial layer that inter-339

polates the final dimension of the input to 20x size. Because the linear layer340

of the optimal MLP upscales the final dimension to 10x, the 20x model has341

a slightly different structure of second layer as it takes an input of [b, t, h,342

20w]. The linear model performed best in the MAE and R2 metrics. Thus,343

although interpolation allows for model parameter savings, it is not much,344

and the reduced accuracy is not worth these savings in most cases, so we345

developed STAMNet on top of this optimal linear architecture.346
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Table 2: Ablation experiments for biomass upscaling to determine the best method of

increasing dimension size. MAE is given in mol
m3 and MSE is given in mol

m3

2
.

Linear Interpolation (10x) Interpolation (20x)

MSE 2508 2471 2471
MAE 21.62 22.25 22.02
R2 0.897 0.880 0.875

3.2. STAMNet-Upscale Performance347

3.2.1. Biomass Upscaling348

The results of our upscaling models for the biomass prediction task are349

given in Table 3. The interpolation model here is different than the interpo-350

lation models used in the ablation experiments. In the ablation experiments,351

the interpolation was used as an initial layer of a model with multiple linear352

layers and an activation function after the interpolation. For the interpola-353

tion model in table 3, there are no linear layers after the interpolation. In354

other words, it is just a simple interpolation of the final dimension, which is355

the most simple and rapid way to generate reasonably accurate results for356

the task of upscaling as defined in this paper. This interpolation model can357

also be though of as a simple reproduction of the baseline scale (but with358

extended dimensions), meaning that the errors for the interpolation model359

are a proxy for the differences between 1x and 10x scale. The simple MLP is360

a one-layer MLP that increases the size of the final dimension by 10x. The361

optimal MLP is the fully optimized MLP structure given in Figure 5a. The362

structure of STAMNet, our proposed best-performing model, can be seen in363

Figure 5c. The MLP+ECA model has the same structure as STAMNet, but364

with the ECA attention module instead of the STAM attention module.365

For all models tested, STAMNet-Upscale shows the strongest performance366

by a statistically significant margin for the both MSE and R2 metrics. Both367

models with attention modules outperform the optimal MLP, further indicat-368

ing that attention is a useful tool for developing robust upscaling model ar-369

chitectures. STAMNet-Upscale performs better than the MLP+ECA model,370

indicating that cross-dimensional feature refinement offers performance bene-371

fits over single dimensional (temporal) feature refinement. All trained models372

perform better than simple interpolation, showing the general benefit to the373

approach of using deep learning for upscaling of reactive transport simula-374

tions.375
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Figure 7: Spatial error distribution of biomass averaged over all test simulations and
time steps. (a) Ground truth spatial distribution. (b) Ground truth minus output from
STAMNet-Upscale. (c) Ground truth minus the MLP+ECA model. (d) Ground truth
minus simple interpolation. (e-h) Zoomed in versions of a-d. These figures show that
STAMNet has difficulty predicting fine spatial variations but is more accurate than a
simple interpolation.

    0              40             80           120           160           200    

Figure 8: Biomass time series averaged over all upscaling test simulations and time steps.
The blue dotted line corresponds to the time series for a simple interpolation of the input,
the red dashed line corresponds to the output for STAMNet-Upscale, the yellow dash-
dotted line corresponds to the output for the MLP+ECA model, and the green dash-
dotted line corresponds to the ground truth (i.e., the time series of the 10x scale simulation
output). This figure shows STAMNet outperforms simple interpolation and achieves a high
level of accuracy in terms of time series prediction.
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To further investigate the performance of our different models for the task376

of upscaling biomass, we plot the spatial error (Fig. 7) and the mean time se-377

ries error (Fig. 8). The spatial errors show that the simple interpolation (Fig.378

7d), the MLP+ECA (Fig. 7c), and STAMNet-Upscale (Fig. 7b) all fail to379

capture fine variations in the ground truth spatial distribution. Instead, they380

achieve a low MSE/MAE by averaging out the variabilities in space. This is381

to be expected, however. Without a method that specifically constrains the382

spatial distributions of biomass concentrations, the model lacks the ability383

to predict exactly what the upscaled version will look like, so the model just384

makes an average guess. In other words, the neural nets may learn to approx-385

imate the vertical variability in biomass well, since this doesn’t change much386

between small and large-scale simulations, but have no ability to predict the387

horizontal variability in biomass as this may change significantly based on388

scale and more strongly depends on the differences between the small and389

large-scale permeability fields. To compensate for this lack of knowledge, the390

neural nets make predictions that represent averages across many horizontal391

voxels. We experimented with loss functions to try to add this constraint to392

the spatial distribution of the outputs, but found it had too negative of an393

impact on the outputs of time series distributions and did not improve the394

accuracy of the spatial distributions (either in exact value or ”look”) enough395

to warrant further investigation. Thus, although there are some differences396

in the spatial error between different models, no model we tested provides an397

adequate representation of physically realistic spatial variations, and more398

robust techniques are needed to achieve high-fidelity spatial predictions.399

In terms of comparison between the methods, STAMNet-Upscale and the400

MLP+ECA clearly outperform the interpolation, which can be better seen401

from the zoomed-in sections of the spatial error distributions (Figs. 7e-7h).402

There is a very slight difference between error for STAMNet-Upscale and the403

MLP+ECA, but it is essentially negligible with regards to the overall accu-404

racy of the predictions of spatial distributions. One big difference between405

the interpolation and the attention-based neural nets is that the interpola-406

tion model greatly overcalculates biomass concentrations, especially near the407

right boundary of the domain. The right boundary of the domain is often a408

source of nutrients and thus a location of dense biomass growth. In the 1x2409

meter simulation, these nutrients are able to reach into and cause biomass410

growth in about half of the domain, meaning a simple interpolation to the411

1x20 meter simulation leads to high biomass concentrations that extend too412

far into the domain. The primary reason for this significant error in the413
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simple interpolation model is that the 1x and 10x scale simulations have the414

same pressure boundary conditions, meaning they have different pressure415

gradients. Specifically, the 1x simulation has a pressure gradient 10 times416

greater than the 10x solution, meaning horizontal flow results in less biomass417

growth at 10x scale in terms of the percentage of the domain. The neural418

nets are able to provide more accurate mapping between the two scales, al-419

though they still show significant spatial errors at the right-hand boundary420

due to their tendency to average local variations in concentration.421

In addition to our analysis of the spatial errors of the simple interpolation422

method and attention-based models, we also investigate their performance423

in terms of the average time series prediction (Fig. 8). Unlike the spa-424

tial distributions, all models perform quite well at the task of capturing the425

average upscaled time series. Both attention-based models clearly outper-426

form a simple interpolation, and STAMNet-Upscale slightly outperforms the427

MLP+ECA model.428

3.2.2. Low and High-Concentration Biomass Upscaling429

To further refine our general investigation of the upscaling potential of430

STAMNet for RT simulations, we split this analysis up to investigate per-431

formance on high-concentration and low-concentration simulations. Of the432

13 test simulations, 5 simulations can be categorized as high-concentration433

(mean biomass greater than 50 mol/m3), and 5 simulations can be catego-434

rized as low-concentration (mean biomass less than 15 mol/m3). The spatial435

errors for both the low and high concentrations (Fig. 9) show the same trends436

as the spatial errors for the full set of results (Fig. 7). For the low concentra-437

tions, STAMNet-Upscale (Fig. 9b) and the MLP+ECA model (Fig. 9c) are438

completely indistinguishable, and both clearly outperform the interpolation439

(Fig, 9d). For the high concnetrations, there is similarly very little difference440

between the spatial errors for STAMNet (Fig. 9f) and the MLP+ECA model441

(Fig. 9g). Both attention-based neural nets outperform simple interpolation442

(Fig. 9h), although similar to the full set of results (Fig. 7) for biomass443

upscaling, these differences are negligible compared to the overall error of444

the spatial distributions.445

The time series plots for the low and high-concentration upscaling (Fig.446

10) reveal slightly more interesting deviations from the analysis of all test447

simulations. The low-concentration time series (Fig. 10a) shows dramatically448

better performance for the attention-based neural nets when compared to the449

simple interpolation. The high-concentration time series (Fig. 10b), on the450
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Figure 9: Spatial error distribution of biomass averaged over low and high-concentration
test simulations.(a) Ground truth spatial distribution for low-concentration simulations.(b)
Ground truth minus output from STAMNet-Upscale for low-concentration simulations.(c)
Ground truth minus the MLP+ECA model for the low-concentration simulations. (d)
Ground truth minus simple interpolation for low-concentration simulations. (e-h) High-
concentration versions of a-d. These figures show greater difference between the spatial
errors of the interpolation and our trained networks for low-concentration simulations than
high-concentration simulations.

a. b.

    0             40             80           120          160          200           0             40            80           120          160           200       

Figure 10: Biomass time series averaged over low (a) and high-concentration (b) upscaling
test simulations. This figure shows STAMNet-Upscale outperforms simple interpolation
and our MLP+ECA architecture, especially for low-concentration simulations.
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Table 3: Results for biomass upscaling. Each model was trained and tested 14 times, and
values here correspond to the average scores over all 14 model iterations. MAE of biomass

is given in mol
m3 and MSE is given in mol

m3

2
. Values in bold indicate statistically significantly

better performance than all other models.
Interpolation Simple MLP Optimal MLP MLP + ECA STAMNet-Upscale

MSE 4089 2691 2508 2525 2480
MAE 26.42 28.08 21.62 21.35 21.60
R2 0.727 0.903 0.897 0.892 0.925

other hand, shows relatively small differences between each model. Thus,451

our results indicate that a simple interpolation is a generally accurate way452

to upscale high-concentration RT simulations of biomass growth, but not for453

low-concentration simulations as it results in a large amount of overprediction454

of biomass concentrations. As previously discussed, this overprediction is due455

to the differences in pressure gradients at low and high scales, which appear456

to be especially relevant in low-concentration simulations.457

Across all biomass upscaling experiments, our results show that compared458

to models without attention, STAM can selectively focus on important fea-459

tures in the input, potentially leading to better performance on tasks that460

require understanding of complex spatial-temporal relationships. Compared461

to ECA, which focuses on attention in the temporal dimension, STAM pro-462

vides a more comprehensive attention mechanism that considers both spatial463

and temporal dimensions. STAM generally performs better than ECA, which464

indicates the cross-dimensional attention, which improves feature mapping465

in both the spatial and temporal dimensions, is advantageous for the task of466

upscaling.467

3.2.3. Molasses and Cr(VI) Upscaling468

We further show the strong performance of STAMNet by upscaling RT469

simulations for the molasses (electron donor - ED) and Cr(VI) features. We470

find that STAMNet significantly outperforms the simple interpolation and471

MLP+ECA model for ED prediction in the MSE and R2 metrics (Table472

4). Furthermore, the MLP+ECA model also significantly outperforms the473

simple interpolation in all metrics, which once again shows the benefit of474

neural architectures, and especially those with attention, for the task of up-475

scaling. Specifically, these results show that the benefits of our neural ar-476

chitectures for upscaling are not restricted to biomass, and can be extended477

to other features. The results for Cr(VI) similarly show high upscaling per-478

20



Table 4: Results for upscaling experiments with molasses (ED) and Chromium. MAE is

given in mol
L and MSE is given in mol

L

2
. Values in bold indicate statistically significantly

better performance than all other models.

ED Interpolation MLP + ECA STAMNet-Upscale

MSE 1.20× 10−4 2.77× 10−5 2.62× 10−5

MAE 2.72× 10−3 1.81× 10−3 1.80× 10−3

R2 0.2937 0.888 0.913

Cr(VI) Interpolation MLP + ECA STAMNet-Upscale

MSE 5.32× 10−4 1.02× 10−4 8.92× 10−5

MAE 3.31× 10−3 2.45× 10−3 2.23× 10−3

R2 0.9093 0.9508 0.9227

formance for both STAMNet-Upscale and the MLP+ECA model. Also, in479

this case, the MLP+ECA model outperforms STAMNet-Upscale in the R2
480

metric, but performs worse than STAMNet-Upscale for the MSE and MAE481

metrics (although none of these differences are significant), indicating that482

the differences in performance between STAM and ECA may depend on the483

particular task. Thus, in addition to providing trained models for biomass,484

ED, and Cr(VI) upscaling, we provide multiple frameworks with which fu-485

ture researchers can train their own upscaling models for specific features486

they may be interested in. Although we find STAMNet to outperform our487

optimized MLP+ECA model, we encourage researchers to run their own ex-488

periments with their data to determine which model works best for their489

task.490

Similar to our results for the biomass upscaling, we also present spa-491

tial and time series errors for chromium and molasses (Fig. 11). Like492

all the spatial errors for biomass, we find that STAMNet-Upscale and the493

MLP+ECA model outperform the simple interpolation but are not able to494

capture the fine-grained details of the spatial distributions for molasses (Fig.495

11c) and chromium (Fig. 11d). For the mean time series comparison, we496

see STAMNet-Upscale and the MLP+ECA model perform equally well at497

molasses upscaling (Fig. 11a). Surprisingly, although the MLP+ECA model498

gives a higher R2 for Cr(VI) when the metric is calculated as the mean over499

the set of R2 values for each time series, when the R2 is calculated from the500

mean time series (i.e. the time series is averaged over all siulations then R2
501

is calculated), we see STAMNet-Upscale has a slightly higher R2 (Fig. 11b).502

This indicates that MLP+ECA is more accurate for the Cr(VI) upscaling503
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Figure 11: STAMNet-Upscale, MLP+ECA, and interpolation performance for (a) molasses
time series, (b) chromium time series, (c) molasses spatial error distributions, and (d)
chromium spatial error distributions. STAMNet outperforms interpolation in the molasses
time series and spatial distribution and the chromium spatial distribution, but it is nearly
indistinguishable from the interpolation for the chromium time series.

of any given simulation, but that STAMNet-Upscale will be more accurate504

when considering the mean value of a variety of simulations. The simple505

interpolation performs well for Cr(VI), but not for molasses, further showing506

its inconsistent performance compared to that of the attention-based neural507

nets.508

3.3. STAMNet-Upsample Performance509

In addition to our investigation of upscaling in the sense of increasing the510

lateral domain of the simulation output, we also use another variant of the511

STAMNet architecture (Fig. 5c) to increase the resolution of the simulation512

Table 5: Results for upsampling experiments. MAE is given in mol
m3 and MSE is given in

mol
m3

2
.

Interpolation Simple MLP Optimal MLP MLP+ECA STAMNet-Upsample

MSE 73.50 54.45 28.58 29.76 26.22
MAE 1.443 1.557 1.263 1.268 1.238
R2 0.9997 0.9987 0.9984 0.9987 0.9986
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STAMNet-Upsample

STAMNet-Upsample

Figure 12: Spatial error distribution of biomass averaged over all test simulations and
time steps for the upsampling task. (a) Ground truth spatial distribution. (b) Ground
truth minus output from STAMNet-Upscale. (c) Ground truth minus simple interpolation.
(d-f) Zoomed in versions of a-c. These figures show the superior spatial performance of
STAMNet over interpolation for the task of upsampling, especially near the boundaries of
the domain.

output, which we refer to as the task of upsampling. We find that STAMNet-513

Upsample shows significantly better performance than all other models for514

the upsampling task in MSE and MAE, although a simple interpolation gives515

the best performance for R2 (Table 5). Considering we trained and tested516

on a smaller number of simulations for the task of upsampling compared to517

the task of upsampling, and that we only used homogeneous permeability518

fields for the upsampling simulations, it is likely that the upsampling task519

was not difficult enough to result in large performance differences between520

models. Furthermore, some degree of overfitting on the MSE and MAE dur-521

ing training may have resulted in a model that focuses more on the spatial522

aspects of the upsampling task than the average temporal ones. Looking at523

the spatial distributions for STAMNet-Upsample and the interpolation (Fig.524

12), we can see that STAMNet-Upsample does indeed have more accurate525

spatial approximations (especially at the domain boundaries). Thus, while it526

could be argued the simple interpolation may be more appropriate for tasks527

that don’t care about the accuracy of the spatial distribution, for tasks where528

spatial accuracy is important, STAMNet-Upsample is clearly advantageous529

to simple interpolation. We also find that the addition of STAM to the opti-530

mized MLP improves performance, but the addition of ECA to the optimized531

MLP generally decreases performance. These results contrast those of the532

23



upscaling task, where both ECA and STAM were found to improve MLP per-533

formance. As seen by the high R2 of all models for the average time series,534

the task of upsampling does not result in large differences in the average tem-535

poral trends. Thus, ECA, which uses 1D convolution to improve temporal536

feature extraction, results in a tiny improvement in R2 (relative to the opti-537

mal MLP), but causes a decrease in MAE and MSE due to the extra focus on538

temporal features. This trend is not observed in the upscaling results (Table539

3), however, as ECA shows significant improvements to MAE for biomass540

upscaling. Given the significant differences in task and input tensors, these541

differences are likely a result of differences in the task-specific performances542

of each architecture and imperfect training hyperparameters. Thus, although543

ECA generally doesn’t perform as well as STAMNet-Upsample for the task of544

upsampling, it is possible these results would be different if hyperparameters545

were individually tuned for each model, which strengthens our suggestion for546

future researchers to experiment with both the STAMNet and MLP+ECA547

architectures.548

4. Conclusions549

This study presents STAMNet, a novel deep learning architecture for up-550

scaling and upsampling reactive transport simulations in the hyporheic zone551

with specific applications to Monte-Carlo-style investigations of bioremedia-552

tion. Our results demonstrate that STAMNet outperforms traditional inter-553

polation methods and simpler neural network architectures across multiple554

tasks and metrics. STAMNet-Upscale significantly improved upon simple in-555

terpolation and optimized MLP models for biomass upscaling, achieving the556

highest R2 (0.925) and lowest MSE among tested models. Furthermore, the557

spatiotemporal attention module (STAM) consistently outperformed efficient558

channel attention (ECA), indicating the benefits of cross-dimensional feature559

refinement for reactive transport modeling. Notably, STAMNet showed ro-560

bust performance across different concentration regimes, with particularly561

strong improvements over interpolation for low-concentration simulations.562

The architecture performed well with other reactive transport variables,563

showing significant improvements for molasses (electron donor) upscaling and564

competitive performance for chromium upscaling. Furthermore, STAMNet-565

Upsample demonstrated superior performance in increasing simulation reso-566

lution, particularly in capturing spatial details more accurately than simple567

interpolation. By enabling rapid upscaling and upsampling of simulations,568
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this approach has the potential to accelerate research in hyporheic zone pro-569

cesses and enhance our ability to quickly design bioremediation approaches570

at large scales. As the field continues to evolve, the integration of advanced571

deep learning architectures like STAMNet with domain-specific knowledge572

promises to unlock new possibilities in environmental modeling and decision-573

making.574

While STAMNet shows promise for accelerating and enhancing reactive575

transport simulations, some limitations should be noted. The current imple-576

mentation struggles to capture fine-grained spatial variations in upscaled sim-577

ulations, instead producing averaged distributions. Additionally, the model’s578

performance may vary depending on the specific reactive transport variable579

being predicted, as seen in the differences between biomass, molasses, and580

chromium results. It’s also important to acknowledge that the study focused581

on a specific bioremediation scenario, and further testing is needed to con-582

firm generalizability to other subsurface environments and reactive transport583

systems.584

Future research directions should address these limitations and expand585

upon the current work. Investigators should explore methods to incorporate586

physical constraints or multi-scale approaches to improve the spatial fidelity587

of upscaled predictions. Extending the model to handle a wider range of588

reactive transport variables and scenarios, including more complex biogeo-589

chemical reactions, constant pressure gradients, and heterogeneous subsur-590

face environments, would further enhance its applicability. The integration591

of STAMNet with physics-based models to create hybrid approaches that592

leverage both data-driven and mechanistic insights is also an exciting avenue593

for development. Finally, investigating the potential of STAMNet for other594

spatiotemporal prediction tasks beyond reactive transport, such as climate595

modeling or ecosystem dynamics, could open up new applications for this596

innovative architecture.597
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