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• We propose DeepTrackStat, a novel end-to-end framework composed of multiple convolutional neural networks5

and vision transformers with class-based ensembling that generates fast and accurate predictions for speed,6

velocity component (𝑉𝑥 & 𝑉𝑦), and turn angle distributions of particles.7

• DeepTrackStat was specifically developed to generate motion statistics of particles from the types of videos8

found in microfluidics and microscopy studies.9

• DeepTrackStat outperforms a variety of classical particle tracking algorithms in the task of motion statistic10

prediction.11

• DeepTrackStat performance is especially strong at high speeds compared to classical particle tracking algo-12

rithms.13
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Particle tracking (PT) is a mature area of research that traditionally has used Gaussian filtering23

and nearest neighbors-based algorithms to detect and link features in a sequence of images.24

PT shares many similarities with the general task of object tracking, although it is specifically25

designed for tracking objects that are usually small and have a distinct shape shared amongst26

all particles in images with little to no background. Although object tracking is also a mature27

area of research, transferring the computer vision techniques from general object tracking to PT28

presents significant challenges due to the sparseness of particles and high resolution of PT videos.29

To remedy these issues, we present DeepTrackStat (DTS), a novel class-based deep learning30

framework for the engineering application of extracting motion statistics from videos of particles.31

DTS is able to bypass the tracking process entirely and generate accurate statistics on speed,32

velocity components, and turn angle for a wide range of PT scenarios including trajectories33

derived from Brownian motion, Poiseuille flow, and porous media flow. The model is robust34

to large variations in particle size, shape, brightness, speed, density, and signal to noise ratio,35

and can reduce the time required to obtain the target statistics from videos of moving particles36

by 6x (when compared with classical methods). In addition, we show that DTS’ performance37

is comparable to a state-of-the-art (SOTA) method for a variety of simulated trajectories and38

experimental datasets of motile bacteria dispersing in porous media under a range of flow39

conditions.40

41

1. Introduction42

At a basic level, Particle Tracking (PT) is a set of algorithms used to detect bright spots and determine their43

trajectories across multiple frames of a video. PT can be considered a subset of the object tracking task, and can be44

applied to any video data with moving objects, but it is especially relevant for tracking small, spherical particles. This45

includes phenomena such as bacterial dispersion and transport in porous media [1-9], cellular diffusion [10, 11], biofilm46

formation [12], chemotaxis [13-15], viral transport [16], and colloid filtration [17]. These applications of PT are highly47

dependent on algorithm’s capability to accurately extract particles’ motion statistics. Reliable estimates of particles’48

speed, velocity components, and turning angles measured along the length of a trajectory are essential ingredients49

for developing predictive models of transport of viewable substances in natural and engineered porous media [18, 19].50

Inaccurate or incomplete measurement of motion statistics leads to erroneous estimations of bulk transport metrics. For51

example, when PT algorithms tend to miss fast-moving particles, it can lead to an underestimation of the mean square52

displacement of the spreading plume of particles [20]. Microfluidic studies paired with advance imaging techniques are53

often conducted to first record videos of dispersing particles which are then analyzed by PT algorithms to characterize54

particles’ motion behavior in controlled settings [21, 22, 23]. The motion is then mathematically and/or numerically55

upscaled to provide estimates of bulk transport properties at range of scales relevant to engineering applications [24,56

25].57

Most PT frameworks consist of detection, linking, and filtering stages [26]. The detection stage generally uses58

a Gaussian filter to filter and normalize an image, thus revealing local maxima that correspond to the centroids of59

spherical objects of a certain diameter. Many strategies have been developed to improve upon this general detection60

method [27, 28], and the most state of the art detection algorithms use convolutional neural networks (CNNs) to61

improve particle recognition [29-31]. The linking stage consists of connecting the detected bright spots across multiple62
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frames in time to form the most probable trajectory for each particle, and is generally where most PT algorithms63

differ from each other. For linking of fast and dense particles, TrackMate (TM) [32] has been shown to be one64

of the best performing PT algorithms [20, 26]. However, TM is also slow, and it may take significant domain65

knowledge and experimentation to achieve accurate tracking results. Unlike detection, very few deep learning (DL)-66

based methods have been developed for the linking stage. The only algorithm that has been presented as an end-to-end67

DL-based framework for linking particle trajectories is MAGIK [33], which uses a graph neural network to capture the68

spatiotemporal relationships present in PT coordinate data. Although this algorithm boasts strong performance for the69

tested scenarios, it is untested in scenarios of high particle speed and density, and requires a large amount of VRAM70

(a coordinates shape of 100 frames by 1000 particles requires at least more than 24GB). Furthermore, MAGIK still71

requires another algorithm to perform the detection stage, and then the coordinate data must be converted to node-edge72

format for model use (which is not a trivial step), meaning it does not improve the ease, speed, or accuracy of the overall73

particle tracking process. MAGIK can also be thought of as one of the few models that bridge the gap between the74

fields of particle tracking and object tracking. Object tracking is a mature field within the domain of computer vision75

that uses CNNs and vision transformers (ViTs) to primarily track people and cars [34, 35]. Although object tracking76

methods are robust in their task-relevant performance, few have been trained to track the kinds of objects generally77

found in particle tracking experiments.78

In an effort to bridge the gap between the particle tracking and object tracking domains and improve upon79

the extraction of motion statistics from PT data, we propose DeepTrackStat (DTS), a novel end-to-end DL-based80

framework. Specifically, our model offers the ability to predict speed, velocity (𝑉𝑥 and 𝑉𝑦) and turn angle distributions81

from a raw image sequence input. DTS is designed to be as general as possible, meaning it can accurately predict82

statistics from a variety of particle shapes, sizes, brightness, density, speed, and signal to noise ratio, and a variety83

of trajectory motion types such as dispersive, straight, and Brownian. DTS is a two-stage system that consists of a84

speed classifier (SC) and statistics-specific models (SSMs). An input image sequence is first classified according to85

mean speed, then based on this classification, different ensembles of models are used to generate the final predictions86

for each set of statistics. We show that our proposed class-based ensembling method largely outperforms a simple87

ensembling method and multiple classical PT algorithms. Furthermore, our method significantly outperforms three88

popular classical PT algorithms and slightly outperforms TM (a SOTA classical algorithm) over the whole test set,89

and it significantly outperforms TM when only analyzing videos with high-speed particles. Finally, we find that DTS90

can offer significant time savings for the extraction of motion statistics compared to classical PT algorithms as it’s91

measured to be around 6x faster than TM.92

2. Data and methods93

2.1. Simulated data94

DTS was developed with the goal of extracting motion statistics from a wide range of videos of particles. One95

of the challenges of this task is that there are no common benchmarks that currently exist for the specific task of96

measuring particle motion extraction capabilities. Thus, we developed a novel dataset containing a wide variety of97

particle tracking cases to properly test DTS. To create a highly general model, we generated over 2000 simulations of98

moving particles that were used for training. All simulations were 40 frames long, 2000 by 2000 pixels, and 1 channel99

(grayscale). The simulations differed in two primary ways - image and motion properties - in order to train the model on100

a wide variety of spatiotemporal conditions. Samples of the types of imagery and the distributions of motion statistics101

generated from our simulations can be seen in Figure 1. The image properties we varied were particle shape, size,102

density, seeding location, brightness, and signal to noise ratio (SNR). To change the SNR of the simulations, we used103

varying combinations of Gaussian, speckled, and salt and pepper noise. The motion properties we varied were particle104

speeds and pathlines. The pathlines were either generated randomly (to represent Brownian motion) or from flow fields105

representative of flow in porous media, straight advective flow, or Poiseuille flow. The porous media pathlines were106

largely generated from flow fields of heterogeneous geometries (created both in OpenFOAM [36] and via the Lattice107

Boltzman Method). A small percentage of the simulated data represents that of a homogeneous porous geometry108

consisting of a staggered array of cylinders. This type of homogeneous geometry has been used for particle tracking109

studies in the fields of bacterial motility and deterministic lateral displacement [2, 37]. Likewise, Brownian motion,110

and Poiseuille and heterogeneous porous media flows represent a large range of the motion observed in the body of111

cell microscopy data. Thus, our image and particle motion varieties aim to capture the most commonly encountered112

types of video data for both microfluidics and general microscopy experiments. The simulated training and testing set113
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don’t significantly differ. Different parameters (particle speed, density, SNR, shape and seeding location) were used to114

generate the testing simulations than the training simulations, but the range of distributions of variables from the testing115

simulations generally falls within the range of distributions of variables from the training simulations (Fig. 1). In an116

effort to display the robustness of DTS, the simulated test set aims to replicate most of the variation in the simulated117

training set.118

The aim of DTS is to predict speed, velocity component, and turn angle distributions directly from videos of119

moving particles. We chose to focus on the prediction of these motion statistics because they are important baseline120

measurements to understand the advective-diffusive transport of particles such as colloids and bacteria. However, we121

believe that frameworks like DTS can be extended to other statistics, so our work also serves as a proof of concept122

for researchers who may be looking for more task-relevant statistics such as dispersion coefficients or mean square123

displacements. For speed, we predict the magnitude of the ensemble velocity of the particles in pixels per frame as124

𝑆 =
√

(𝑥𝑡+1 − 𝑥𝑡)2 + (𝑦𝑡+1 − 𝑦𝑡)2∕Δ𝑡, where 𝑡 represents time (in frames) and Δ𝑡 = 1. For velocity, we predict the125

ensemble x and y velocity components (𝑉𝑥 and 𝑉𝑦) in pixels per frame. For turn angle, we predict the relative change126

in direction of the ensemble of particles between two successive frames as 𝛼𝑡 = arctan( 𝑦𝑡+2−𝑦𝑡+1𝑥𝑡+2−𝑥𝑡+1
) − arctan( 𝑦𝑡+1−𝑦𝑡𝑥𝑡+1−𝑥𝑡

). A127

low average turn angle corresponds to particles that primarily move straight, and a high average turn angle corresponds128

to particles that have a high probability of changing directions between frames.129

2.2. Experimental data130

In addition to our simulated imagery/trajectories, we also test the performance of DTS on experimental videos.131

These videos are from microfluidics experiments of motile bacteria in porous and open media. Specifically, we use132

videos of Acidovorax [38], Geobacter [39], Paenibacillus [40], and Shewanella [41] moving through structures with133

varying levels of porosity (𝜙 = 0, 𝜙 = 0.42, and 𝜙 = 0.6) and at varying flow rates (0, 1, and 5 𝜇𝑙∕ℎ). Because this is134

an experimental dataset, there is no ground truth. Thus, we use the results from TM as a relative ground truth to gauge135

the performance of DTS. The experimental videos range from 200 to 3000 frames, and are 2048 by 2048 pixels.136

2.3. Model development137

We present a novel end-to-end framework that consists of two stages: the speed classifier (SC) and the statistics-138

specific models (SSMs). Previous studies have presented similar class-based ensemble methods for various tasks [42,139

43, 44]. However, our model is novel in its combination of architectures used, the use of a speed classifier to improve140

predictions of motion statistics, and the task of extracting information from videos of moving particles. The framework141

splits an input video into 40-frame chunks and averages the motion statistics predictions across all chunks, meaning142

the model can process any grayscale video input with at least 40 frames. The SC uses an ensemble of convolutional143

neural networks (CNNs) and vision transformers (ViTs) to classify the input into one of five classes based on speed.144

All models used in the ensemble can be seen in the publicly-available testing script, but the models that carry the most145

weight in the SC ensemble are VoloD1-384 [45], Pyramid Vision Transformer V2-b1 [46], RegnetX-032 [47], and146

VoloD3-448 [45], which were chosen for their high single-model performance. CNNs are well known to be able to147

capture spatial features within the images of a video [48], but may have trouble learning the temporal relationships in148

the data [49]. Thus, we also use ViTs, which are especially suited to learn features in sequences of images [50], and149

have shown high performance on video classification tasks [51]. The speed classifier tries to predict ranges of mean150

particle speeds. Specifically, class 1 corresponds to a mean speed of 0-2 pixels/frame, class 2 is 2-5 pixels/frame, class151

3 is 5-10 pixels/frame, class 4 is 10-18 pixels/frame, and class 5 corresponds to a mean particle speed of greater than152

18 pixels/frame.153

The second stage of the DTS framework, the SSMs, consists of a variety of ensemble models for each statistic154

and each class. The specific models used in each ensemble were determined by their single-model performance. DTS155

outputs a sorted 500-length vector of probable values for particle speeds, turn angles, and velocity components (𝑉𝑥156

and 𝑉𝑦). Through this framework, the speed classifier has a large impact on the final results, with each specific SSM157

only slighlty shifting the value of the outputs. The ensemble weights for the SC and SSMs were determined through158

calibration of 50% of the simulated test data. In addition to calibration, we used simple boolean logic to improve DTS’159

performance on Brownian trajectories and trajectories that are relatively straight, but this feature has to be manually160

specified by the user. If the user knows a particular video contains primarily Brownian trajectories and sets this flag, then161

DTS will ensure that the output for 𝑉𝑥 has a mean value of 0. Likewise, if the user observes that their video contains a162

large majority of particles that move straight, DTS will use a different ensemble for the turn angle distribution. Although163

DTS still has comparable performance to TrackMate without the use of these special flags, their use improves results164
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Figure 1: Images and motion statistic distributions for the training, simulated test, and experimental test data. The images
are grayscale (1 channel) and are presented here as false-color images to highlight differences in brightness. The wide
variety of images (in terms of particle density, shape, size, and image noise) illustrate the range of inputs that DTS is able
to extract accurate predictions from. The blue distribution is the mean of the respective set (training, simulated testing,
experimental testing), the orange is the mean minus one standard deviation, and the green is the mean plus one standard
deviation. The grey distributions show the full range of variability for the respective set. The distributions for the simulated
and experimental test datasets are mostly captured in the training dataset.

for the specific cases of Brownian and straight particles. For all results discussed in the paper, both flags were used to165

improve performance for these trajectory types.166

The speed SSM primarily consists of a 4xVoloD1-224 patch model, VoloD3-448, VoloD1-384, and VoloD2-384.167

The patch model takes in a downsampled video input (448x448 pixels) and splits it into four 224x224 patches. Each of168

these patches is then fed into a VoloD1-224 model with an output size of [B,500]. The outputs from each VoloD1-224169

model are then concatenated and fed into a fully connected layer to get the final desired output shape of 500. For all other170

models, the final classification layer is simply replaced to get an output shape of 500. After each model generates its171

outputs, the class-based ensemble weights are used to generate the final model outputs. The exact models and ensemble172

Berghouse et al.: Preprint submitted to Elsevier Page 4 of 14



DeepTrackStat

Speed Vectors

Ensemble Speed
Prediction

Ensembling weights
determined by

speed class

Angle Model
(class, straight

trajectories flag)

Speed Classifier (1, 2, 3, 4, 5)

Volo D1 - 384 px

Input (B, T, W, H)

Speed Model

Speed Vector

Volo D3 - 448 px

Patch Model - 448 px

Volo D2 - 384 px

Speed Vector

Speed Vector

Concat +FC

Input (B, T, W, H)

Vx Model (class,
Brownian flag)

Angle Vector

Vy Vector

Sort + fit to Exponential distribution

Sort + fit to Normal distribution
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Figure 2: Overall framework for the proposed model (DTS). The model accepts a grayscale video as input (T must be 40,
W and H must be equal) and first send it through the speed classifier (SC), which is an ensemble model used to classify the
video of particles into 5 speed categories. The input is then sequentially sent to statistics-specific models (SSMs), which
are each individually trained for their specific prediction task. Based on the output of the speed classifier, each SSM uses
a different conditional ensemble model to generate the predictions. The outputs of DTS are the raw 500-length vectors of
values for each statistic, and the respective distribution for each statistic.

weights used in each stage are given in Supplementary Figure 1. All base models were constructed with the PyTorch173

Image Models (TIMM) repository [52], meaning the final classification layer was changed via the "num_classes" flag.174

All models used the default pre-trained weights from TIMM (model-specific, but mostly ImageNet [53]). The turn175

angle, 𝑉𝑥, and 𝑉𝑦 SSMs are constructed from similar ensembles, the details of which can be viewed in the code or176

Supplementary Figure 1.177

2.4. Training and testing process178

We used 1923 simulations for training and 481 simulations for validation, which was used to reduce overfitting179

during training via early stopping. The simulated test set contains 43 simulations and the experimental test set contains180

23 pairs of images and trajectories. For TIMM models, the set dropout rate applies increasingly larger amounts of181
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dropout in the transition layers of the model, with the final transition layer having the set amount of dropout. All patch-182

based models were trained with dropout of 0.3, and all other models were trained with dropout of 0.4. All models were183

trained with the AdamW optimizer at a learning rate (lr) of between 1.2e-5 and 2e-4. The speed classifier was trained184

with an lr of 2e-4, the speed SSM was trained with an lr of 1.2e-5, the 𝑉𝑦 SSM was trained with an lr of 1e-4, the 𝑉𝑥185

SSM was trained with an lr of 1.2e-4, and the 𝛼 SSM was trained with an lr of 6e-5. Hyperparameter tuning (dropout,186

learning rate, and number of classes) was done in a two step process. We tuned the hyperparameters automatically via187

Optuna [54] for a few models for each statistic, then used the best range of learning rates to manually test a few sets of188

hyperparameters for each of the other models. All speed classifier models were trained for 400 epochs, speed prediction189

models were trained for 90 epochs, 𝛼 models were trained for 300 epochs, 𝑉𝑦 models were trained for 95 epochs, and 𝑉𝑥190

models were trained for 150 epochs. All “224” (i.e. models that take in an input of 224x224) models were trained with191

a batch size of 32, all “384” models were trained with a batch size of 16, and all 448 models were trained with a batch192

size of 8. All training and testing for DTS, and all PT experiments, were performed on a CUDA-capable computer with193

an Nvidia 4090 GPU, Intel i9-14900KF CPU, and 96GB of RAM.194

In this paper we compare the performance of DTS to four other algorithms (TrackMate, Trackpy [55], TracTrac195

[56], and LapTrack [57]). For TrackMate, we used the Kalman filter linking algorithm for trajectories with directed196

motion and the LAP linking algorithm for trajectories with Brownian motion. Aggregate motion statistics for each197

classical PT algorithm (and the ground truth) were computed by ensemble averaging methods over all trajectories198

and frames. Essentially, each tracker outputs a csv of the trajectories that are sorted and looped through to calculate199

ensemble statistics. Statistics for DTS are calculated as the ensemble of all outputs from a single video.200

Each model was calibrated to achieve the best results on the testing set. For TM, Trackpy, TracTrac and LapTrack,201

calibration was performed through a cycle of visual and statistical analysis to inform the adjustment of tracking202

parameters. For DTS, calibration entailed adjusting the class-based ensemble weights to achieve the best possible203

results on 50% of the testing data. The point of the calibration step is to simulate the scenario of using DTS to extract204

motion statistics from multiple videos. Given the rigorous testing in scientific literature that classical PT algorithms205

have gone through, it is reasonable to first use a classical PT framework (such as TM) to produce motion statistics in206

order to verify the accuracy of DTS for a particular dataset. If there are any significant discrepancies between DTS207

and TM, the ensemble weights of DTS can then be adjusted to match TM (or any other SOTA tracking algorithm),208

ensuring accurate statistics for the particular data being analyzed. In addition to our calibrated results, we also provide209

uncalibrated results for DTS. In the uncalibrated version of DTS, the ensemble weights were determined through210

optimizing predictions of the validation set.211

3. Results and discussion212

3.1. Decreased run time213

One of the primary advantages of DTS over classical PT algorithms (such as TM) is the reduced computation time214

for generation of motion statistics. Particle trajectory analysis often requires many imaging trials at high resolution,215

meaning the time required to extract motion statistics is an important concern. For one of our experimental videos with216

dense particles that contains 2480 frames, TM takes 2.5 minutes for loading the images into ImageJ [58], 5 minutes to217

perform the detection step, 4 minutes to perform the linking step, 0.5 minutes to filter and export the trajectories, and218

0.5 minutes to calculate the statistics, which means the TM framework in total takes 12.5 minutes to extract statistics219

from the video data. This is assuming that OOM errors aren’t encountered (a 2480 frame video of 2048x2048 resolution220

with >1000 particles in each frame will cause TM to crash) and that the tracking parameters used on the first try are221

optimal, which is unlikely for anyone besides an expert in the field. Even for someone experienced with PT codes, a222

2480 frame video with over 1000 particles per frame will likely require 30 minutes to get good results. In stark contrast,223

DTS only takes 2 minutes to make its predictions for the same video, and requires significantly less domain knowledge224

to get accurate predictions of motion statistics. Additionally, DTS always takes two minutes for a 2480 frame video of225

2048x2048 resolution, whereas the time required to generate statistics via classical PT methods significantly depends226

on the number of trajectories. For videos with very few particles, DTS may not save much time, but for videos with a227

large number of particles (>1000), DTS will save a significant amount of time.228

3.2. Ablation experiments229

In order to show the benefit of our proposed model structure, we performed ablation experiments for each statistic.230

We report the mean average error (MAE) plus or minus the standard deviation of the mean value of each statistic across231
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Table 1
Ablation experiments on the simulated test set (n=43 samples). Scores are reported as the MAE for all samples in the test
set plus or minus one standard deviation of the MAE between all samples of the test set. The metrics are non-negative
with a large positive skew that often results in a standard deviation greater than the mean. For all proceeding tables,
results are reported as the mean error with a 10th-90th range to clear any potential confusion. Here we give the results for
the top 4 sets of single models, a simple ensemble of MS-1, MS-2, and MS-3, and a 4-var model that uses a single model
(VoloD1-384) to predict all statistics at once, and DTS (the proposed framework). The best performing single models for
speed are VoloD3-448 (MS-1 & MS-3) and the 4xVoloD1-224 patch model (MS-2 & MS-4). For 𝑉𝑥 the best performing
models are VoloD1-384 (MS-1), RegnetX-016 (MS-2), VoloD3-448 (MS-3), and RegnetX-032 (MS-4). For 𝑉𝑦 the best
performing models are VoloD4-448 (MS-1), VoloD3-448 (MS-2), VoloD1-384 (MS-3) and VoloD1-224 (MS-4). For turn
angle the best performing models are VoloD3-448 (MS-1 & MS-3) and VoloD1-384 (MS-2 & MS-4). The class-based
model significantly (p < 0.05) outperforms the simple ensemble for the speed predictions and slightly outperforms the
ensemble in all other metrics.

Stat MS-1 MS-2 MS-3 MS-4 Ensemble 4-Var Model DTS

𝑆 3.7 ± 5.0 4.2 ± 6.1 4.3 ± 6.0 9.7 ± 15 5.2 ± 7.8 10 ± 12 𝟐.𝟖 ± 𝟑.𝟑
𝑉𝑥 5.7 ± 4.6 5.8 ± 4.8 6.0 ± 5.5 6.8 ± 6.4 5.7 ± 4.8 9.9 ± 12 5.1 ± 9.0
𝑉𝑦 0.8 ± 0.7 0.9 ± 0.6 0.9 ± 0.9 1.0 ± 0.9 0.8 ± 0.8 6.5 ± 7.2 0.5 ± 0.5
𝛼 3.4 ± 2.9 3.5 ± 2.7 3.7 ± 3.9 3.9 ± 4.1 3.0 ± 2.7 5.4 ± 5.3 2.5 ± 2.1

all simulated test data for the four best sets of single models, a simple ensemble of the best models, a single model that232

outputs all four variables at once, and our proposed class-based model (Table 1). The set of single models represent the233

top 4 single models for each variable. For example, MS-1 gives the results for a VoloD3-448 model used to calculate234

speed, a VoloD1-384 model used to calculate 𝑉𝑥, a VoloD4-448 model used to calculate 𝑉𝑦, and a VoloD3-448 model235

used to calculate 𝛼. In the 4-Var model, there are four separate VoloD1-224 models that generate the feature maps236

for each variable, then these four feature maps are concatenated and passed through a linear layer to generate the final237

output of shape [B, 500, 4]. In this case, we see performance is dramatically worse than that of the set of single models,238

the simple ensemble and DTS, which indicates the need to develop an ensemble of single models.239

For all statistics besides 𝑉𝑥, we find that the class-based model largely outperforms the best sets of single models.240

Furthermore, DTS significantly (p < 0.05) outperforms a simple ensemble of the best single models for the speed and241

turn angle prediction tasks. In the case of 𝑉𝑥, although the MAE is greater for DTS than for model 1, other metrics242

(RMSE and W1) indicate that DTS has a better overall fit to the ground truth data. Thus, we illustrate that a class-based243

ensembling method can lead to significant performance increases for the task of predicting motion statistics from videos244

of particles. Furthermore, the class-based method contains a large number of parameters that can be manually fine-245

tuned (such as the Brownian and straight motion flags, and easily modifiable weights for the SC and SSMs), which246

allows for more precise calibration depending on the range of videos that need to be analyzed.247

The full DTS framework has around 2 billion (1,994,005,238) parameters. The single models used in this study248

have between 8 and 200 million parameters. Using all the best single models, the full prediction framework would have249

around 330 million parameters. The ensemble framework uses 3 models for the prediction of each statistic, which gives250

it around 1 billion parameters. The 4-var model is just a single VoloD1-384 model for all statistics, so this would only251

have 26 million parameters. Although the 4-Var model performs significantly worse than all others, this framework252

could be advantageous for situations where rapid predictions and low computational cost are required or preferred over253

accuracy.254

3.3. Simulated test set255

To ensure that DTS can handle a wide variety of simulated data, we included test simulations that had large256

variations in image and trajectory properties (Fig. 1). Our results indicate that the performance of DTS can match257

that of TM across this wide variety of simulations (Table 2). Specifically, DTS significantly outperforms TM in 2258

out of 3 of the speed and angle metrics. Furthermore, DTS vastly outperforms other well-known PT methods such as259

Trackpy (Table 3), TracTrac (Table 4), and Laptrack (Table 5). In addition, we tried to compare the performance of260

DTS with a SOTA optical flow method [59], but determined that the model would require fine-tuning to perform the261

desired task (Supplementary Figure 2).262
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a. b.

Figure 3: Impact on turn angle predictions of using the "straight trajectories flag" for a simulation of straight-moving
particles. (a) Predictions with the flag on. (b) Predictions with the flag off. DTS is unable to accurately predict the turn
angle distribution without manual help, illustrating the benefit of the flag, and the need to visually inspect the inputs
before using DTS.

Table 2
Results from the simulated test set (n=43 samples) for each statistic comparing DTS and TM. The mean of each statistic
is given along with the 90th-10th percentile error range. For both frameworks, we give the MAE, RMSE, and 1-Wasserstein
distance (W1) for each statistic (relative to the ground truth). Statistically significantly better performances are bolded.

DeepTrackStat TrackMate

Stat MAE RMSE W1 MAE RMSE W1

Speed 𝟐.𝟖𝟎 [.𝟏𝟏𝟔, 𝟕.𝟏𝟖] 𝟓.𝟑𝟕 [.𝟖𝟑𝟗, 𝟏𝟏.𝟔] .026 [.0005, .082] 7.41 [.030, 28.0] 11.1 [.610, 31.8] .016 [.0015, .053]
𝑉𝑥 5.05 [.047, 15.7] 8.48 [.828, 20.6] .076 [.0013, .113] 7.95 [.004, .342] 12.0 [.712, 34.2] .087 [.0010, .154]
𝑉𝑦 .547 [.012, 1.27] 4.63 [.609, 12.9] .026 [.0005, .108] .𝟐𝟗𝟏 [.𝟎𝟎𝟓, .𝟖𝟒𝟔] 4.95 [.231, 11.9] .021 [.0004, .090]
𝛼 𝟐.𝟓𝟏 [.𝟓𝟐𝟗, 𝟓.𝟐𝟑] 𝟓.𝟒𝟏 [𝟏.𝟓𝟕, 𝟗.𝟔𝟑] .002 [.00002, .002] 5.49 [.987, 9.59] 10.5 [3.90, 20.8] .002 [.00017, .004]

Complementary to our calibrated results for DTS, we also present results for an uncalibrated framework (Table 6).263

While the uncalibrated framework doesn’t perform as well as the calibrated framework (Table 5), it does indicate264

that DTS can be used out-of-the-box to predict motion statistics with much greater accuracy than the calibrated265

predictions of Trackpy (Table 2), TracTrac (Table 3), and Laptrack (Table 4), and slightly better accuracy than the266

calibrated predictions of TrackMate (Table 5). Additionally, these results show that the class-based framework has a267

clear advantage over simple ensembling for speed and angle predictions(Table 1).268

DTS shows especially strong performance for simulations with high particle speeds (Table 7). We define high-speed269

simulations as having a mean ensemble speed of greater than 25 pixels/frame. For our 12 test simulations that meet270

this criteria, DTS dramatically outperforms TM, showing improvement in every metric for the speed, 𝑉𝑥, and turn271

angle statistics. Once again, the speed and angle predictions stand out, with both the MAE and RMSE showing a272

statistically significant improvement from TM. For traditional particle tracking methods (ie not based in deep learning273

methods) such as TM, the quality of the extracted trajectories is mainly determined by particle spacing displacement274

ratio (PSDR), which is the ratio of the average spacing between any two particles and the average speed of a particle.275

Since TM, and most other classical PT methods, are all roughly based on some kind of nearest neighbors approach,276

the lower the PSDR, the harder it is for them to accurately track the particles. At high particle speeds, the PSDR is low,277

so TM is unable to extract accurate trajectories. DTS, since it is not based on any kind of nearest neighbors algorithm278

and does not actually perform tracking, doesn’t suffer from this issue. For speed, The MAE for DTS is about 5x less279

than that of TM, showing that DTS has a clear application for improving the accuracy of speed predictions for videos280

of high-speed particles.281
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Table 3
Results from the simulated test set (n=43 samples) for each statistic for Trackpy. The mean of each statistic is given along
with the 90th-10th percentile error range. The performance of Trackpy is considerably worse than that of DTS or TM.

Stat MAE RMSE W1

𝑆 8.44 [.306, 26.0] 10.8 [.508, 30.4] .038 [.0008, .142]
𝑉𝑥 8.87 [.392, 27.2] 11.6 [.662, 32.9] .032 [.0015, .049]
𝑉𝑦 3.42 [.174, 13.5] 4.87 [.364, 16.9] .037 [.0002, .172]
𝛼 8.42 [1.06, 20.4] 13.2 [1.77, 28.8] .003 [.0002, .005]

Table 4
Results from the simulated test set (n=43 samples) for each statistic for TracTrac. The mean of each statistic is given
along with the 90th-10th percentile error range. TracTrac is the lowest-performing PT method that was tested in this
study.

Stat MAE RMSE W1

𝑆 12.0 [.029, 32.2] 14.2 [.068, 32.9] .032 [.0017, .046]
𝑉𝑥 12.8 [.045, 39.9] 14.8 [.156, 45.2] .026 [.0022, .031]
𝑉𝑦 4.06 [.023, 13.0] 5.32 [.179, 16.4] .032 [.0015, .075]
𝛼 14.5 [.548, 42.3] 14.5 [.548, 42.3] .002 [.00007, .006]

Table 5
Results from the simulated test set (n=43 samples) for each statistic for Laptrack. The mean of each statistic is given
along with the 90th-10th percentile error range. The performance of Laptrack is considerably worse than that of DTS or
TM.

Stat MAE RMSE W1

𝑆 8.14 [.533, 22.3] 11.1 [1.33, 25.7] .035 [.0006, .085]
𝑉𝑥 8.69 [.584, 22.7] 12.5 [3.20, 29.6] .032 [.0015, .063]
𝑉𝑦 3.63 [.500, 10.4] 6.29 [1.19, 13.3] .041 [.0006, .171]
𝛼 10.4 [.964, 20.1] 15.5 [2.23, 29.0] .003 [.0002, .005]

Table 6
Uncalibrated results from the simulated test set (n=43 samples) for each statistic for DTS. For these results, the ensemble
weights and chosen models for DTS were determined via performance on the validation set, meaning these represent the
general performance capabilities of DTS for completely unseen data. While the results aren’t as strong as the calibrated
ones, the errors in speed and angle prediction are still less than any other method tested in this paper.

Stat MAE RMSE W1

𝑆 3.23 [.25, 7.7] 5.32 [.30, 12.1] .021 [.00046, .039]
𝑉𝑥 5.20 [.03, 20.2] 8.62 [.91, 22.4] .026 [.00104, .077]
𝑉𝑦 .627 [.03, 1.8] 4.25 [.39, 10.4] .025 [.00153, .081]
𝛼 2.58 [.53, 5.2] 5.35 [1.3, 9.81] .002 [.00002, .002]

In addition to our numerical performance comparison of DTS and TM, we also present a graphical performance282

comparison of the distributions of the simulated and experimental test sets (Fig. 4) for each statistic. The distributions283

obtained from the simulated test sets (Figs. 4a, 4b, 4c, and 4d) show that, on average, the distribution shapes obtained284

from DTS closely resemble the ground truth trajectories. Furthermore, for 𝑉𝑥, although the fit between distributions285

(as measured by W1) is usually closer to the ground truth for TM on a simulation-by-simulation basis, the predictions286

by DTS are much more accurate for the high-speed simulations. Thus, when looking at the distribution for all data, the287

predictions from DTS show much better alignment with the ground truth than TM does. This importantly shows that288

DTS has a lower chance of correctly predicting the true 𝑉𝑥 distribution for individual videos, but a higher chance of289

predicting the true 𝑉𝑥 distribution for a group of videos.290
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Table 7
Average results from a high-speed subset (n=12 samples) of the simulated test data. Statistically significantly better
performances are bolded. In the case of high-speed PT data, DTS performs better than TM in every metric.

DeepTrackStat TrackMate

Stat MAE RMSE W1 MAE RMSE W1

Speed 𝟒.𝟑𝟑 [𝟏.𝟐𝟓, 𝟗.𝟑𝟓] 𝟕.𝟗𝟑 [𝟐.𝟐𝟏, 𝟏𝟓.𝟓] .002 [.0003, .003] 22.8 [2.36, 46.4] 27.5 [9.31, 51.9] .004 [.002, .006]
𝑉𝑥 12.9 [.718, 35.6] 18.6 [7.31, 43.4] .050 [.0060, .027] 24.7 [2.40, 51.9] 28.9 [8.58, 56.4] .146 [.0540, .161]
𝑉𝑦 .882 [.249, 1.38] 8.70 [3.06, 16.3] .004 [.0003, .004] .775 [.190, 1.41] 9.51 [3.46, 17.2] .003 [.0004, .009]
𝛼 𝟐.𝟖𝟓 [.𝟒𝟎𝟎, 𝟓.𝟑𝟔] 𝟓.𝟎𝟑 [𝟏.𝟐𝟒, 𝟕.𝟖𝟖] .002 [.00005, .002] 5.60 [2.71, 7.68] 13.5 [5.35, 20.2] .003 [.0006, .002]

Simulated Experimental

a. b. e. f.

g. h.d.c.

Figure 4: Distribution comparisons for simulated (a-d) and experimental (e-h) test sets for speed (a & e), turn angle (b
& f), 𝑉𝑥 (c & g), and 𝑉𝑦 (d & h). For the simulated test set, we compare DTS and TM to the ground truth. For the
experimental test set, we only compare DTS with TM, since there is no ground truth. Each distribution is obtained from
a concatenated list of all values (from each individual simulation) for the respective statistic.

Table 8
Average results from the experimental test set (n=23 samples) for each statistic. Since there is no ground truth data for
the experimental data, errors for DTS are calculated relative to TM.

Stat MAE RMSE W1

𝑆 1.98 [.312, 4.19] 5.36 [2.17, 11.8] .026 [.006, .053]
𝑉𝑥 1.26 [.072, 2.11] 2.29 [.757, 4.38] .026 [.0056, .058]
𝑉𝑦 .298 [.008, .793] 1.89 [.407, 2.95] .033 [.002, .073]
𝛼 7.05 [.724, 14.1] 10.8 [4.12, 17.1] .001 [.00006, .002]

3.4. Experimental test set291

The results from the experimental test set (Table 8) further indicate DTS’ ability to accurately extract motion292

statistics from videos of moving particles. DTS shows strong alignment with TM for all statistics. The values are close293

enough that, given DTS’ strong performance on simulated test set, it’s unclear which distributions are more accurate.294

For example, the high speeds predicted by TM (Fig. 4e), such as up to 1000 pixels/frame, are highly unlikely for a295

video of bacteria in porous media flows at 2048x2048 resolution. This would mean that a particle could move across296

the camera’s field of view in only two frames, which is not possible for the max flow speed (up to 800𝜇𝑚∕𝑠), frame rate297

(10 FPS), image magnification (0.325 px/𝜇𝑚) of our specific experiments. A quick calculation shows the max speed a298

particle should be able to achieve in pixels/frame is about 246, meaning that DTS’ estimate of a max speed of about299

350 pixels/frame is in all likelihood more accurate than TM’s estimate of 1000 pixels/frame.300
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4. Conclusions301

We show that our proposed model, DeepTrackStat, achieves SOTA performance at comparatively rapid speeds for302

the general task of predicting speed, 𝑉𝑥, 𝑉𝑦, and turn angle distributions for a wide variety of particle tracking situations.303

Specifically, our model is capable of predicting these motion statistics for a large range of particle, image, and trajectory304

types (dispersive, Brownian, Poiseuille) about 6 times faster than via classical particle tracking algorithms. Through305

ablation experiments we show that our novel class-based ensembling method outperforms a simple ensembling method.306

We then show that DTS outperforms all classical PT algorithms used in this study for the prediction of motion statistics307

for our simulated test set, and we confirm the applicability of our models to real-world data by showing that the outputs308

of DTS are comparable to the outputs obtained from TM. In addition, we highlight DTS’ strong performance for the309

specific task of predicting statistics from videos of particles moving at high speeds. In this case, the performance310

of DTS greatly exceeds that of TM (the top-performing classical algorithm). Thus, we present a novel method for311

extraction of motion statistics and apply it to videos of particles. Although our models are specifically trained for the312

task of extracting statistics from videos of moving particles, our class-based ensembling framework can theoretically313

be extended to extract motion statistics of any set of objects where the speed of the object is significantly correlated314

with the other motion statistics to be predicted.315

Although we have shown the robust performance of DTS across a wide variety of image and motion types, there are316

many limitations present in our study that primarily revolve around scope. First and foremost, we recognize that a more317

rigorous study would include more simulated and experimental test sets. In addition, DTS was calibrated on 50% of the318

simulated test data, so for particles with motion statistics that greatly fall outside of the training or calibration range, it is319

unlikely that DTS will perform well. This can be seen in the case of the straight trajectories (Fig. 3) - although DTS was320

trained on trajectories of similar types, straight-trajectory simulations made up a small percentage the entire training321

set. Thus, without the addition of a manually set flag to indicate that the particles are moving straight, DTS is not322

able to make accurate turn angle predictions. Another primary limitation of our work is that we have only compared323

DTS to classical PT algorithms. A more robust study might use fine tuning of SOTA object tracking algorithms to324

more effectively combine the domains of particle tracking and object tracking and determine more optimal network325

architectures. Finally, our work is limited in that it can only be used to predict four motion statistics. Rigorous transport326

studies often need more statistical evidence to make insightful claims, so our work could be improved by increasing327

the number of statistics DTS can accurately predict.328

We hope that our model is of practical use to researchers interested in applications of particle tracking. We have329

supplied the model weights at https://zenodo.org/records/11245477, and all data and scripts needed for training and330

testing can be found at https://github.com/mberghouse/DeepTrackStat. Furthermore, our training data represents one331

of the most comprehensive sets ground-truth particle tracking data publicly available on the internet, and we believe332

researchers will find it useful for the development of even more robust applications related to PT. Thus, we hope that333

our work generally sparks interest within the research community about applications of computer vision for particle334

tracking and motion statistics predictions. Neither of these are solved problems yet, and improving these tasks can335

greatly improve research capabilities in the wide variety of fields that make use of them.336
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